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Abstract: Identifying whether a lexico-semantic relation holds between a pair

of words or not is essential for many NLP and Information Retrieval applications.

Therefore, multiple strategies have been proposed but most of them focus on identi-

fying a single relation. However, a lot of recent studies show that multi-task strate-

gies can considerably improve the classification process of multiple lexico-semantic

relations at the same time. In our work, we consider existing strategies (i.e. binary

and multi-task classification) but with a novel input representation of a given word

pair. Indeed, we propose to investigate the introduction of related words in terms

of cosine similarity measure (so called neighbors) as the new input feature in order

to get a more generic idea of the relation that may exist between a pair of words.

As such, the concatenation of the continuous distributional representations of the

words in a pair and their neighbors forms the patch representation. Evaluation re-

sults over a set of gold-standard datasets (RUMEN, ROOT9, Weeds, Bless) show

that consistent and significant improvements can be obtained by including these in-

put features, mainly when attention mechanisms are applied based on the PageRank

algorithm.

Keywords: Lexico-semantic relations, Binary classification, Multi-task learn-

ing, Neural networks, Attention mechanisms, PageRank, Asymmetric relations,

Symmetric relations.
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Chapter 1

Introduction

Recognizing the exact nature of the semantic relation holding between a given pair

of words is crucial for many Natural Language Processing (NLP) applications such

as question answering [Dong 2017], query expansion [Kathuria 2017] or text sum-

marization [Gambhir 2016]. A variety of symmetric and asymmetric lexico-semantic

relations among words can be numerated such as synonymy (e.g. phone ←→ tele-

phone), co-hyponymy (e.g. phone ←→ monitor), hypernymy (e.g. phone → speak-

erphone) or meronymy (e.g. phone → mouthpiece), etc.

Numerous approaches have been proposed to identify one particular semantic

relation of interest (i.e binary classification) [Snow 2005, Roller 2014, Weeds 2014,

Shwartz 2016b, Nguyen 2017, Glavas 2017]. Many studies focus on hypernymy,

which lies at the core of human cognition and enables generalization [Wang 2018].

However, considerable research effort exist on antonomy [Nguyen 2017], meronymy

[Glavas 2017] and co-hyponymy [Weeds 2014]. On the other hand, several methods

have been proposed to discriminate between multiple semantic relations that hold

between a pair of words [Guggilla 2016, Shwartz 2016a]. Some works [Liu 2017, San-

tus 2016] showed that learning features that encode one lexical relation can improve

the ability to identify another lexical relation (i.e co-hyponymy and hypernymy

[Weeds 2014]). But, this remains a difficult task since it’s been hard to distinguish

between certain relations (e.g synonymy and hyperonymy) [Shwartz 2016a]. Within

this scope, multi-task strategies [Attia 2016, Balikas 2019] have been proposed,

which consist of a set of binary classifiers jointly learned. Each classifier is trained

to learn whether a specific lexico-semantic relation holds between a pair of given

words. The idea behind using multi-task strategies is to enhance the classification

performance if the tasks are correlated.

All these studies in the literature take as inputs the distributional and/or path-
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based representations of the pair of words to identify the lexico-semantic relation.

In our work, we would like to consider not only the representation of the given pair

of words but also the neighbors of these words in terms of cosine similarity in the

embedding space. The underlying idea of using the nearest neighbors of the pair

of words is an analogy with the patch definition in image processing. The patch

is defined as a small portion of an image and a container of pixels sharing similar

properties [Alkinani 2017].

Once our notion of patch is defined, we also explore the similarity between

patches as an analogy to the similarity between words (e.g. cosine similarity).

Recently, attention mechanisms have become effective to obtain higher results

in many domains like image processing [Mnih 2014] and also Natural Language

Processing [Kim 2017, Lin 2017, Eriguchi 2016, Bahdanau 2014, Rocktäschel 2015,

Rush 2015]. Therefore, we include two attention mechanisms in our input represen-

tation to better guide our model to distinguish the valuable information from our

large input vectors.

In this report, we introduce our strategy to identify lexico-semantic relations

that hold between pairs of words by focusing on:

• The continuous distributional representation of word pairs and their neighbors

using word embeddings (here GloVe),

• The pattern-based encoding of word pairs and their neighbors using BiLSTM,

• The definition of binary and multi-task classification strategies,

• The definition of attention mechanisms grounded on PageRank and,

• The evaluation over four gold-standard datasets (RUMEN, ROOT9, Bless and

Weeds).

Our results show that including the distributional representation of k similar

words of a given pair leads to significant improvements, in particular when the

attention mechanisms are applied, whatever the different architectures.
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2.1.3 Context-dependent models . . . . . . . . . . . . . . . . . . . 5
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In the following, we present different word representations proposed in the lit-

erature and review two main approaches for the identification of lexico-semantic

relations, namely pattern-based models and distributional models. We also report

on the major learning strategies used in our study and introduce the concepts of

patch and attention mechanisms.

2.1 Word embeddings

Word embeddings are vector representations of word meanings, which are dense,

distributed, fixed-length, built using word co-occurrence statistics as per the distri-

butional hypothesis This hypothesis was suggested by [Harris 1954] and it consists

of the assumption that words with similar contexts have the same meaning. Word

embeddings can be categorized into two types, depending on the models used to

induce them. The first category is prediction-based models that use local data (e.g.

a word’s context) and the second one is count-based models that take into consid-

eration global information such as word counts and frequencies [Almeida 2019].
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2.1.1 Prediction-based models

The progress of prediction-based is strongly linked with the progress of neural lan-

guage models. In fact, many studies show that neural language models were deliv-

ering better results at modelling language [Bengio 2003a, Bengio 2003b, Mnih 2007,

Collobert 2008]. The main contributions of word embeddings comes with the models

introduced by [Mikolov 2009, Mikolov 2010]. In particular, [Mikolov 2010] uses recur-

rent neural networks claiming that the model would remember long contexts with-

out the need to specify explicitly how many words to consider as context. Later on,

two models for learning embeddings were proposed [Mikolov 2013a, Mikolov 2013b]:

namely the continuous bag-of-words (CBOW) and skip-gram (SG) models. The

CBOW model predicts a center word based on its given context words, while the

SG model predicts the probabilities of a word being a context word for a given tar-

get word. The main objective of these unsupervised feed-forward neural networks

is to improve their predictive ability. Variants of these models were proposed by

[Mikolov 2013b] to optimize and speed up the training process by using negative

sampling. Word2Vec1 toolkit provides an efficient implementation of these two ar-

chitectures. Recent contributions propose other improvements of SG models and

a new toolkit is made available by Facebook, namely fastText2 [Joulin 2016]. In

particular, good performance was achieved with the fastText model for word repre-

sentations, which is making use of character-level representations.

2.1.2 Count-based models

The count-based models are unsupervised methods that learn embeddings by con-

structing a co-occurrence matrix that counts how frequently each word appears

in a context in a large corpus [Turney 2010]. Latent Semantic Analysis [Deer-

wester 1990] is the earliest example of generating word embeddings by applying

singular value decomposition on word-context matrices. Multiple count-based mod-

els were proposed later on to induce word embeddings [Collobert 2008, Mnih 2008].

[Lebret 2013] reported better results by applying a Hellinger Principal Component

Analysis transformation on the word-context matrices. Recently, the main contribu-

tion for count-based models is the Global Vector for Word Representation (GloVe)

1https://code.google.com/archive/p/word2vec/
2https://research.fb.com/projects/fasttext/
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model3 proposed by [Pennington 2014]. This model learns word embeddings by en-

coding how often two words appear within a given window, i.e. if two words co-occur

multiple times, it means that they have a semantic similarity. Authors proved that

this model delivers better results than all previous count-based models as well as

prediction-based models.

2.1.3 Context-dependent models

In 2018, two successful context-dependent models were proposed. These two models

go beyond traditional embeddings that are Word2Vec, fastText or GloVe. They

are based on the assumption that a good model should understand the different

meanings of words given the surrounding text. The first model is Embeddings from

Language Models (ELMo) proposed by [Peters 2018] that uses deep learning models

to induce contextualized word representation. Instead of having fixed vectors for

the words, ELMo creates vectors by passing text through the deep learning model,

i.e. a word can have different embeddings depending on its context and its position

in a sentence. The second model is Bidirectional Encoder Representations from

Transformers (BERT) proposed by [Devlin 2018]. This model provides as well a

context-sensitive embedding by making use of transformers, an attention mechanism

that learns contextual relations between words. It has been shown that BERT

produces excellent word embeddings, achieving state-of-art results on various NLP

tasks.

In our study, we will use the pre-trained GloVe embeddings as we are focusing

on single individual words. As such, there is no need for context-dependent models.

Moreover, note that any embedding model could be used as our objective is to

evaluate how much neighbors can help in lexico-semantic relation identification.

As such, we are not especially interested in overall performance. Nevertheless, we

are aware that further work will have to be endeavored to verify if the models

developed in this work can also adapt to context-dependent embeddings. Indeed,

lexico-syntactic patterns between words could play the role of textual context.

3https://nlp.stanford.edu/projects/glove/
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2.2 Semantic relation classification strategies

Two main approaches are being used to classify a pair of words into a fixed lexico-

semantic relation, or to classify it as random if the words are unrelated: pattern-

based approaches and distributional approaches. In this section, we review these

two approaches and the main learning strategies discussed in the literature.

2.2.1 Pattern-based approaches

Pattern-based methods rely on the lexico-syntactic patterns, which connect two

words (e.g. X such as Y). The pioneering work is proposed by [Hearst 1992],

who has found out that defining specific patterns implies accurate results in iden-

tifying semantic relations such as hypernymy. Since then, several variations of

pattern-based methods have been proposed to detect hypernymy, in particular

[Snow 2005, Ritter 2009, Roller 2018]. Patterns may be predefined, or learned

automatically [Kozareva 2010, Snow 2005, Snow 2006]. In this situation, words are

represented by a set of patterns and the relevant ones are those who get higher

learning weights by the classifier. [Snow 2005] showed that learned patterns incor-

porate those manually defined by [Hearst 1992]. However, a common problem of

lexico-syntactic patterns is their sparsity: no relation can be detected if the words

do not co-occur in exactly the right configuration [Roller 2018]. To overcome the

sparsity issue, the focus has recently shifted to representing patterns as continuous

vectors using neural networks such as BiLSTM [Nguyen 2017, Shwartz 2016b]. In

fact, demonstrated good performance proved the generalization efficiency of these

models for single semantic relation classification ([Shwartz 2016b] for hypernymy

and [Nguyen 2017] for antonymy). In our work, we propose to include these con-

tinuous pattern representations as learning features and we aim to represent all

patterns independently of the tackled semantic relation.

2.2.2 Distributional approaches

Distributional methods represent another category to capture the semantics between

a pair of words and to alleviate the sparsity problem in pattern-based models. It

consists of characterizing the semantic relation between two words based on their dis-

tributional representations, i.e. vectors based on their distribution separately across

large corpora [Wang 2018]. In this case, the words are represented by the concate-
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nation of their vectors ([Baroni 2012, Roller 2014, Weeds 2014] for discrete case and

[Shwartz 2016b] for the continuous case) or by their difference ([Weeds 2004] for

the discrete case and [Fu 2015, Vylomova 2015] for the continuous case). Distribu-

tional methods offer rich representations of lexical meaning but the main drawback

of the distributional hypothesis is that it conflates different semantic relations be-

tween words. Therefore, specialized similarity measures are required to distinguish

different relations [Roller 2018].

Another popular solution to this drawback is to specialize word embeddings for

particular relations using external knowledge. In this case, the pre-trained distribu-

tional space is post-processed to better reflect properties of a certain relation (e.g.

[Wieting 2015, Mrksic 2017] for synonymy and [Vulic 2017] for hypernymy). How-

ever, these methods are one-relation specific and could not differentiate between

multiple semantic relations at a time. [Nguyen 2017, Shwartz 2016b] show that

combining pattern-based approaches and distributional approaches enhance classi-

fication performance in latent spaces.

For that purpose, we consider in our models both pattern-based and distribu-

tional representations.

2.2.3 Learning strategies

Different learning strategies were proposed to identify the semantic relation that

holds between words: binary classification [Snow 2005, Roller 2014, Weeds 2014,

Shwartz 2016b, Nguyen 2017, Glavas 2017], multi-class classification [Guggilla 2016,

Shwartz 2016a] and multi-task strategies [Attia 2016, Balikas 2019]. In binary clas-

sification models, the objective is to detect a single relation at a time. [Snow 2005]

build a classifier that learns to decide whether the relation holding between a given

pair of nouns, if any, is a hypernymy relation. [Weeds 2014] consider supervised ap-

proaches by constructing linear Support Vector Machines and k-Nearest Neighbors

classifiers and reported that these models could outperform state-of-the-art unsu-

pervised methods when it comes to distinguishing hypernyms and co-hyponyms.

[Shwartz 2016b] tackled as well the hypernymy relation by proposing an improved

path-based algorithm using a recurrent neural network (LSTM). [Glavas 2017] fo-

cuses on detecting asymmetric lexico-semantic relations: hypernymy and meronomy.

A neural architecture, named Dual Tensor model is proposed that models better

asymmetry and that requires only distributional vectors of words as input. This
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model was evaluated on hypernymy classification and meronomy classification.

Within the multi-class classification strategies, [Guggilla 2016] proposed a lexical

semantic relation detection system using convolutional neural networks as part of

the CogALex-V semantic shared task4. The task is divided into two subtasks: the

subtask of detecting if a relation exists between two given words and the subtask of

identifying the type of the relation (hypernymy, meronymy, synonymy or antonymy).

Within this scope, [Shwartz 2016a] achieved a good performance making it between

the top-ranked methods in this multi-class problem.

[Attia 2016] introduced a multi-task strategy by proposing a multi-task convolu-

tional neural network to jointly learn the semantic relation between words within the

second subtask of the CogAlex-V semantic shared task. Another multi-task strat-

egy has been proposed by [Balikas 2019] to concurrently learning semantic relations

with the assumption that the learning process of a given semantic relation may be

improved by jointly learning another semantic relation. These two studies encode

word pairs based on their distributional approach and do not take into consideration

the pattern-based continuous representations.

In our work, besides binary architectures, we propose multi-task architectures

for symmetric and asymmetric semantic relations.

2.3 Patch and attention mechanisms

In the last several years, there have been advances in both the field of Computer

Vision and NLP. The emergence of deep learning techniques has improved many

applications in image processing. This rise and success of convolutional neural

networks and recurrent neural networks in particular, has led to multiple studies

in many other fields. For instance, in the field of NLP significant results have

been achieved (e.g [Kim 2014] for sequence classification, [Zeng 2014] for relation

classification). Our work is inspired by the Computer Vision field, in particular the

patch definition in image processing. A patch is defined in image processing as a

small portion of an image and a container of pixels sharing similar properties. Using

patches instead of processing one pixel at a time of the image is preferable for many

image processing applications such as image denoising [Alkinani 2017]. Since many

NLP approaches consider words as basic units, we would like to consider a similar

4https://sites.google.com/site/cogalex2016/home/shared-task
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definition of the patch in NLP. In fact, instead of modeling only the representation

of the given pair of words in our models, we want to introduce the representation

of the neighbor words of the given pair in terms of cosine similarity measure in

the embedding space. As a consequence, a word is not represented by its unique

lexical unit but also by all its neighboring lexical units. Note that a very recent

work [Jiménez 2019] proposes a similar idea but in the discrete case with set-based

metrics.

Our initial findings showed that the direct introduction of neighbor words does

not lead to improvements. This is mainly due to the vanishing of the focus word

when introducing neighbors. Indeed, in this case, all words become equal, although

some importance should be given to the main concept of the set of words. For

that purpose, we propose to implement an attention mechanism. Recently, atten-

tion mechanisms have become effective to obtain higher results in Computer Vision

[Mnih 2014] and Natural Language processing [Kim 2017, Lin 2017, Eriguchi 2016,

Bahdanau 2014, Rocktäschel 2015, Rush 2015]. Within our work, we define an at-

tention mechanism based on the PageRank algorithm [Brin 1998] that aims to give

a weight of centrality to each of the neighbors when considering the graph of all

neighbors. As such, the more a word is central in the graph, the more it will receive

a high score. These scores will then be used as attention weights to the correspond-

ing continuous representations of the neighbors. The objective of this mechanism

is to improve the predictive ability of our system based on the importance score of

each word embedding in the patch.
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[Balikas 2019] proposed a fully-shared multi-task architecture to identify lexico-

semantic relations between words by considering the concatenation of the distribu-

tional representation of words as input features. In this chapter, we briefly present

their new work1, as part of the PhD. thesis of Houssam AKHMOUCH at the CNRS

research laboratory GREYC2 in collaboration with Crédit Agricole Brie Picardie3,

as a baseline model to our contribution. We start by defining the word pair continu-

ous representations and then we describe the neural network architectures proposed

as well as some experimental setups.

3.1 Word pair continuous representations

3.1.1 Distributional representation

To represent a word pair, three different representations are proposed: vector con-

catenation, vector difference and cosine similarity. Let (x, y) be a word pair and
1This work is under revision for a journal issue.
2https://www.greyc.fr/
3https://www.ca-briepicardie.fr
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(w1, w2) their distributional representations (here GloVe embeddings of dimension

d = 300). Let’s note the concatenation of the distributional vectors w1⊕w2, w1	w2

the vector difference and cos(w1, w2) the cosine similarity measure defined in equa-

tion 3.1. These three representations are concatenated and introduced as input

features, i.e. (w1 ⊕ w2,w1 	 w2, cos(w1, w2)).

cos(w1, w2) =

∑d
i=1w

i
1 × wi

2√∑d
i=1w

i
1
2 ×

√∑d
i=1w

i
2
2

(3.1)

3.1.2 Pattern-based representation

Along with the distributional representations, a word pair is also represented with

the continuous vectors encoding the patterns. Patterns are defined as word se-

quences that occur between the pair of words (x, y) within a span of 10 (chosen

empirically) words maximum of the same sentence. Table 3.1 shows some examples

of patterns between two words.

Relation Pattern

Synonymy error or fault

Hypernymy unit that includes screen

Co-hyponymy pineapple and apricot

Meronymy bowl from the world of glass

Random reference in the book of mormon

Table 3.1: Examples of patterns of a word pair (in bold).

While some patterns can easily indicate the semantic relation, other sequences

can give wrong link predictions. For this matter, AKHMOUCH et al., decided to

keep only the two most frequent patterns for each pair of words. To encode these

patterns, a Bidirectional Long-short Term Memory (BiLSTM) neural network has

been proposed and zero padding has been used to ensure that every sequence has

the same length. These two most frequent patterns are then averaged to obtain a

single representation, noted hw1,w2
∗ . As such the overall input of the model is noted:

X = (w1 ⊕ w2, w1 	 w2, cos(w1, w2), h
w1,w2
∗ ). (3.2)
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3.2 Multi-task architectures

Based on the assumption that a shared layer is efficient when concurrently learning

multiple tasks [Balikas 2019], the overall architecture presented in figure 3.1 consists

of a shared part as well as several private parts. The layer S is the shared one

encoding the common information between tasks as defined in Equation 3.3.

Figure 3.1: The generic (Multiple) Shared-Private Architecture. Differ-

ent configurations of V (X) allow to propose fully-shared, single shared-

private, multiple shared-private architectures for M tasks.

S(X) = σ(WSX + bS) (3.3)

Generic information about words is learned in this shared layer. However, this

may be seen as a limitation for asymmetric relations (hypernymy or meronymy)

where the word order in the input pair matters. To address this issue, two more

extra shared layers are proposed, one for each input word (S1 for w1 and S2 for w2)

defined in Equation 3.4.

Si(X) = σ(W i
Swi + biS), ∀i, 1 ≤ i ≤ 2 (3.4)

As a result, these extra shared layers encode useful information that individual

words may contain alone to decide whether two words are semantically related.
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S(X), S1(X) and S2(X) are shared across all tasks. However, in [Liu 2017], it

has be proven that the classification performance is enhanced if all concurrent tasks

receive both shared and private representations. For this matter, shared-private

architectures are introduced where the input vector is represented with the three

shared representations S(X), S1(X) and S2(X), plus the initial input representation

X fed to two task-dependent layers, namely HTj and OutTj respectively defined in

Equations 3.5 and 3.6 for a specific task Tj .

HTj = σ(W
Tj

H V (X) + b
Tj

H ) (3.5)

OutTj = σ(W
Tj

O HTj + b
Tj

O ) (3.6)

The neural network model parameters are updated by minimizing the binary

cross-entropy function E(Tj) defined in Equation 3.7. Mini batch training is used

with b being the size of the batch. The loss function takes as input OutTj and yTj ,

where yTj = 1 if x and y are Tj-related and yTj = 0 otherwise.

E(Tj) = −
1

b

b∑
i=1

y
Tj

i . log(Out
Tj

i ) + (1− yTj

i ). log(1−OutTj

i ) (3.7)

Concretely, the shared parameters of the shared layers (such as WS and W i
S in

equations 3.3 and 3.4) are updated by minimizing E(Tj) alternatively with the

other tasks. Whereas the private parameters of the private layers (such as W Tj

H

and W Tj

O in equations 3.5 and 3.6) are only updated by minimizing E(Tj) for their

specific learning examples. These training steps are also detailed in Algorithm 1.

From this generic model, three different specific architectures are generated.

First, the fully-shared model originally proposed by [Balikas 2019]. In this archi-

tecture, V (X) = S(X), meaning that all the input information is shared and it’s

the only information used for classification. Second, the single shared-private

model with both shared and private representations but without individual word

information. In fact, V (X) = (S(X), X). The third architecture proposed is the

multiple shared-private model. In this case, V (X) = (S(X), S1(X), S2(X), X).

So, both shared and private representations are used for the decision process along

with the dedicated parts for the embeddings of the input words. These parts are

introduced to improve the performance on asymmetric relations.
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Algorithm 1 The Multiple shared-private Training Process.
Data: Word pairs for each of the M tasks, batch size b, iterations
it = 1 ;
while it < iterations do

for i = 0; i < M ; i = i+ 1 do
Randomly select a batch of size b for Ti called batchi
for (w1, w2) in batchi do

Compute OutTi

end
Update the parameters according to E(Ti) from batchi

Calculate performance on the validation set of Ti.
end

end

Within this scope, another specific architecture has been proposed where pat-

terns are not shared through the network. The underlying idea is that patterns might

be relation-dependent and should only be used as private layers. Therefore, the input

vector X given in equation 3.2 would be ablated from its hw1,w2
∗ argument, such that

X = (w1⊕w2, w1	w2, cos(w1, w2)). As a consequence, h
w1,w2
∗ would be directly con-

catenated to the vector V (X), such that V (X) = (S(X), S1(X), S2(X), X, hw1,w2
∗ ).

Note that these architectures have been tested for concurrent learning of two and

three tasks. But in our study, we focus on one-class architectures and the concurrent

learning of two tasks.

3.3 Experimental setups

In this section, we present the datasets used to evaluate these multi-task architec-

tures. We explain the lexical split and detail the pattern extraction step. Note that

we will use the exact same experimental setups in our study.

3.3.1 Datasets

As reported in Chapter 2, many studies exist for the identification of lexico-semantic

relations. [Weeds 2004] proposed the first gold-standard dataset, called Weeds in the

context of studies about measures of lexical similarity. Following the same objective,

[Baroni 2012] introduced the well-known Bless dataset, and [Santus 2016] compiled
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the ROOT9 dataset4 , which contains word pairs randomly extracted from EVALu-

tion [Santus 2015], Lenci/Benotto [Benotto 2015] and Bless [Baroni 2012]. Within

the context of concurrent identification of lexico-semantic relations, [Balikas 2019]

recently introduced the RUMEN dataset5 to include synonymy. All datasets are

summarized with their specific characteristics in Table 3.2.

Synonym Hypernym Co-hyponym Meronym Random

Dataset # 0 / 1 / 2 / >2 (%) # 0 / 1 / 2 / >2 (%) # 0 / 1 / 2 / >2 (%) # 0 / 1 / 2 / >2 (%) # 0 / 1 / 2 / >2 (%)

RUMEN [Balikas 2019] 6326 44/14/8/34 6326 65/12/5/18 - - - - 6326 93/4/1/2

ROOT9 [Santus 2016] - - 2447 21/9/6/64 3200 28/14/8/50 - - 1100 78/9/4/9

Weeds [Weeds 2004] - - 1257 40/13/6/41 2083 60/11/5/24 - - 6326 93/4/1/2

Bless [Baroni 2012] - - 1337 57/9/4/30 3565 34/12/7/40 2943 99/0/0/1 6702 97/1/0/2

ROOT9 (bal.) - - 1100 20/9/5/65 1100 29/15/8/48 - - 1100 78/9/4/9

Weeds (bal.) - - 1257 40/13/7/40 1257 61/10/5/24 - - 1257 94/4/1/1

Table 3.2: Details of the RUMEN, ROOT9, Weeds and Bless datasets. 0

/ 1 / 2 / >2 stands for the percentage of word pairs having respectively no

pattern, 1 pattern, 2 patterns and more than 2 patterns in the Wikipedia

dump. ROOT9 (bal.) and Weeds (bal.) stand for a balanced version of

the original ROOT9 and Weeds datasets.

In order to avoid the natural imbalance of the datasets, ROOT9 and Weeds have

been modified to ensure that all classes have the same number of pairs. However,

RUMEN was designed to be balanced, so it was not modified. These datasets

are tested to have an overall overview of the bias that can be introduced by an

unbalanced set of learning examples and allow more direct comparisons between

datasets.

3.3.2 Lexical split

As proposed in [Levy 2015], a lexical split is proposed to remove possible vocabulary

intersection between the test and the training/validation sets. In fact, [Levy 2015]

points out that lexical memorization could be performed instead of learning lexico-

semantic relations between words, when using distributional representations in the

context of supervised learning. To avoid this issue, a lexical split is proposed and

we follow the exact same method defined by [Balikas 2019].

4https://github.com/esantus/ROOT9
5https://github.com/Houssam93/MultiTask-Learning-NLP/tree/master
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3.3.3 Pattern extraction

In order to extract the patterns that connect the word pairs of the datasets studied,

the English Wikipedia dump6 has been downloaded and a representative corpus of

approximately 4Gb has been extracted. All the articles in this corpus have then

been splitted into sentences. Note that these sentences were first pre-processed to

remove special characters and stop words. Only patterns that do not exceed a max-

imum length of 10 words7 in a same sentence have then been considered as valid

word sequences.

In our work, we consider the different architectures introduced in this Chapter as

a baseline work to compare with and to prove the efficiency of our contribution. In

fact, as the code and the datasets of [Balikas 2019] are available for reproducibility,

we particularly test our hypotheses on their specific task. The performance of these

architectures will be covered in Chapter 5, along with our results.

6https://dumps.wikimedia.org/enwiki/20190220/
7Value tuned experimentally.
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In this chapter, we detail our main contributions. We start by giving our def-

inition of the notion of patch, which is the underlying idea of our work. Then,

we continue by defining the similarity measure between patches. We present, the

several modifications we have made to the baseline architectures explained in Chap-

ter 3 and introduce the attention mechanism we have used to improve our results.

Finally, we present learning configurations.

4.1 Patch definition

As already mentioned in Chapter 2, we aim in our work to include the word neighbors

representation in the input vector. The word neighbors are defined as the k most

similar words to a source word in terms of cosine similarity in the embedding space.

In our case, we calculate the cosine similarity between the given word embedding

and the other words in the GloVe embedding space. We then select the k1 most

similar vectors to the given word. Table 4.1 illustrates some examples of words with

their neighbors, with descending order.

Once we have the neighbors of both words of the given pair, there are two

options in the way of introducing these words. The first idea is to consider their
1Several values of this parameter have been evaluated: from 1 to 10.
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Word Neighbors

dog (dogs, 0.7888), (cat, 0.6816), (pet, 0.6292), (puppy,
0.5936), (hound, 0.5468), (horse, 0.5369), (animal,
0.5316), (cats, 0.5081), (canine, 0.5038), (pets, 0.5020)

animal (animals, 0.8182), (human, 0.5878), (livestock, 0.5623),
(humans, 0.5392), (dog, 0.5316), (meat, 0.5278),
(wildlife, 0.5258), (pet, 0.5168), (elephant, 0.5043),
(sheep, 0.50386)

whole (entire, 0.7742), (everything, 0.6365), (really, 0.5975),
(thing, 0.5972), (rest, 0.5958), (part, 0.5879), (basically,
0.5854), (this, 0.5829), (just, 0.5792), (it, 0.5782)

unit (units, 0.7417), (division, 0.5817), (operations, 0.5754),
(subsidiary, 0.5044), (company, 0.4778), (force, 0.4743),
(battalion, 0.4680), (brigade, 0.4651), (officer, 0.4645),
(group, 0.4586)

Table 4.1: Examples of neighbors with the cosine similarity measure to

the initial word (in bold).

distributional representation (i.e. their GloVe embeddings) by concatenating them

to the initial input. The second idea would be the consideration of only the cosine

similarity measures between all the neighbors without explicitly introducing the

distributional vectors. In this case, a word-to-word matrix would be computed

between all the neighbors and concatenated to the initial distributed representations

of the input word pair. This second idea has been tested but evidenced decreased

performance, when compared to the baseline model. However, alone, it shows that

some information is encoded in such a matrix. This will be the starting point of the

idea of the attention mechanism introduced in section 4.4.

As a consequence, we proceed with the first idea, where instead of having just

the embeddings of the pair of words, we include as well the embeddings of all k word

neighbors. Figure 4.1 illustrates an example of a word pair and its neighbors. In this

example, we consider the word pair (animal, dog) and we fix k = 2 to have two

neighbors for each word. The relation to be predicted is the hypernymy relation.

The neighbors of the word animal are {animals, human} and the neighbors of the

word dog are {dogs, cat}. We can notice that including the word human in the
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input vector increases the possibility of recognizing that the initial word animal is

a generic term: a hypernym in this case. On the other side, the word cat is a good

indicator that dog is a specific term : a hyponym. So, we think that adding the k

most similar words may benefit the relation decision.

Figure 4.1: Illustrative example of a word pair with its neighbors in the

emebdding space.

The underlying idea is to no longer predict the relation that holds between a

pair of words but between a pair of patches (concepts), where the meaning may be

better estimated.

4.2 Similarity between patches

By analogy with our baseline model, we would like to introduce a similarity measure

in our initial input. Therefore, we extend the definition of cosine similarity measure

between the given word pair to a similarity measure between patches. This similarity

measure between two patches of (k + 1) words each is defined in Equation 4.1 and

is represented by a concatenated (k + 1) × (k + 1) matrix of word-to-word cosine

similarity measures, that will be used as input to the learning model. Note that

the embeddings of the initial word pair are noted w10 and w20, and w1i (resp. w2j)

corresponds to the embedding of the ith (resp. jth) neighbor of word 1 (resp. 2).

SimPatches(w1, w2) =
k⊕

i=0

k⊕
j=0

cos(w1i, w2j) (4.1)
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Based on the same assumption that working with patches reflects better the meaning

of the words and hence the nature of the lexico-semantic relation, we believe that

introducing SimPatches(., .) enhances the model performance as it indicates the

degree of similarity between all pairs of words present in the patches. As follows, we

present the SimPatches(., .) matrix of the previous example, which is introduced

as concatenated values in the learning models.

SimPatches(animal, dog) =


dog dogs cat

animal 0.5316 0.4692 0.2727

animals 0.5025 0.6330 0.2738

human 0.4414 0.4121 0.1849


4.3 Pattern-based representation of patches

We also extend the pattern definition to adapt it to patches. In the baseline model

introduced in Chapter 3, only the two most frequent patterns are kept for each

word pair. These patterns are then encoded with a BiLSTM and averaged in the

end to get a single representation. In our case, we have many (k + 1)2 word pairs.

As such, it not conceivable to compute two patterns for each pair of words2. In

fact, if we choose to include k = 5 neighbors, then we will have 36 word pairs. For

this matter, we follow the same strategy as the baseline model but by considering

only the first frequent pattern for each pair. In this case, we have 36 BiLSTM to

encode these patterns and 36 representations that need to be concatenated with the

input, instead of just a single one. Following the previous notation, the patterns are

represented in Equation 4.2, and consist of the concatenation of (k + 1)2 BiLSTM.

Patterns(w1, w2) =
k⊕

i=0

k⊕
j=0

hw1i,w2j

(4.2)

Since this strategy increases the dimension of our input considerably, we pro-

pose a second strategy that could be followed. It consists of selecting only the most

frequent pattern of all the patterns grouped and get a single representation for all

word pairs. This strategy could alleviate the computational costs.

2This remains as future work outside the goal of this master thesis.
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Finally, a word pair (x,y) is represented by the vector X defined in Equation

4.3, where
⊕k

i=0wzi represents the concatenation of the word embedding of word

wz plus all the embeddiings of its neighbors.

X = (
k⊕

i=0

w1i,
k⊕

i=0

w2i,
k⊕

i=0

k⊕
j=0

cos(w1i, w2j),
k⊕

i=0

k⊕
j=0

hw1i,w2j ) (4.3)

Note that the neighbor word embeddings are included by descending order,

meaning that the most similar vector is concatenated first. This order is impor-

tant to comply with attention mechanism.

4.4 Attention mechanisms

In our work, we use the same architectures as the baseline model. However, we

increase the dimension of our input vector since each word embedding is of dimen-

sion 300 and we evaluate different values of k: the number of neighbors to select.

Therefore, we find it a necessity to include some attention mechanisms in order to

avoid a certain noise that can be added with the neighbor vectors. The overall idea

of our first attention strategy, namely attentionMech1, is to give an importance

score to each word embedding in the input vector. Therefore, we choose to use the

PageRank algorithm [Brin 1998] to get a score for each word in a given patch. As

explained previously, the idea is to give more important focus on the central words

in the patch. For instance, for the following patch {animal, animals, human}, one
would agree that both words animal and animals are more central to the overall

patch than human. As a consequence, we construct an undirected graph from a

given patch. Each node in the graph represents a word and each edge is weighted

with the cosine similarity measure that links two words in the patch. The PageRank

works by counting the number and quality of the links to a word to determine an

estimate of how important the word is in its neighborhood. This way, we get an

importance vector for each word in a patch. Table 4.2 illustrates the PageRank

values two different patches, namely dog and animal. So, each word embedding is

multiplied by its PageRank value as an attention value. Thus, the input embedding

vector of each word in the patch is modified with the attention-weighted GloVe em-

beddings.
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Patch PageRank values

dog (dog, 0.1724), (dogs, 0.1513), (cat, 0.1506), (pet,
0.1409), (puppy, 0.1353), (hound, 0.1258), (horse,
0.1217)

animal (animal, 0.1670), (animals, 0.1667), (humans, 0.1434),
(livestock, 0.1341), (meat, 0.1319), (human, 0.1311),
(dog, 0.1256)

Table 4.2: PageRank values for the patches of dog and animal.

We propose a second attention mechanism, namely attentionMech2 that treats

the whole set of words (i.e two patches). The overall idea is that specific words play

a given role when deciding if two words are in a lexico-semantic relation. While

attentionMech1 focuses on the centrality within a given patch, attentionMech2

focuses on the centrality between two patches. Indeed, it is important to acknowl-

edge, which words are central in a set of two patches in order to verify if two

words are in a lexico-semantic relation. For instance, between the two patches

{animal, animals, human} and {dog, dogs, cat}, one may agree that animal, ani-

mals and dog, dogs are the central words to make the decision, and human and cat

are subsidiary (but useful) information. As a consequence, we execute the PageRank

algorithm on a global graph formed by a pair of patches, where all words are con-

nected and weighted by their cosine similarity. It is important to note that for that

purpose, we exclusively use the SimPatches matrix. Thus, the edges within a given

patch are not taken into account for the PageRank as they are already computed

in attentionMech1. Therefore, we get a single importance vector that includes the

scores of each word in the concatenation. Following the same previous example,

Table 4.3 illustrates the PageRank values for k = 6 and k = 3. Through the table

4.3, we can notice that the choice of the number of neighbors to select is crucial. In

fact, when we set k = 6, the scores don’t really reflect the importance of the words

(small values). However, when we set k = 3, the scores are more representative.

4.5 Binary and multi-task classification

As we already mentioned, we use the same architectures as the baseline model in

Chapter 3 : the fully-shared architecture, the single shared-private architecture,
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Initial patches PageRank values

{Dog, Animal}
(k = 6)

(dog, 0.0865), (dogs, 0.0777), (dog, 0.0766), (pet,
0.0741), (animal, 0.0740), (animals, 0.0737), (cat,
0.0716), (horse, 0.0707), (meat, 0.0683), (livestock,
0.0672), (humans, 0.0667), (puppy, 0.0658), (hound,
0.0634), (human, 0.0634)

{Dog, Animal}
(k = 3)

(animal, 0.1413), (animals, 0.1398), (dogs, 0.1320), (dog,
0.1315), (pet, 0.1242), (cat, 0.1172), (human, 0.1044),
(livestock, 0.1095)

Table 4.3: PageRank values between two patches.

and the multiple shared-private architecture for multi-task architectures. For

the binary classification, the baseline architecture is also used where the shared

representations are omitted. In this section, we introduce the modifications and

changes we made to these architectures.

For the fully-shared and single shared-privatemodels, no changes are needed,

except to the change of the input vector, which turns to be X defined in Equation

4.3. However, for the multiple shared-private model, extra shared representa-

tions are proposed, one for each input word. Therefore, in our case, we have an

extra shared layer for each patch instead of each word (S1 for patch 1 and S2 for

patch 2). So, the model must be redefined for Si(X) as in Equation 4.4.

Si(X) = σ(W i
S

k⊕
j=0

wij + biS), ∀i, 1 ≤ i ≤ 2 (4.4)

After introducing our two attention strategies in the previous section, we have

two possibilities to include this attention in our input vector. The first possibility,

noted seqArchitecture consists of applying the two strategies sequentially: the

input word embeddings of each patch are weighted with attentionMech1 and then

concatenated together to obtain a global representation of 2× (k+1) vectors. This

vector is then weighted with attentionMech2. Note that word ordering is important.

Therefore, the final input X vector can be defined as in Equation 4.5.

X = (
k⊕

i=0

watt12
1i ,

k⊕
i=0

watt12
2i ,

k⊕
i=0

k⊕
j=0

cos(w1i, w2j),
k⊕

i=0

k⊕
j=0

hw1i,w2j ) (4.5)
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The second possibility, noted paralArchitecture , consists of a parallel process.

On the one hand, the input word embeddings of each patch are weighted with

attentionMech1 and on the other hand, the concatenation of these input embed-

dings (non weighted with attentionMech1) is weighted with attentionMech2. So

instead of having 2 × (k + 1) input vectors weighted twice, we will have (k + 1)

weighted (with attentionMech1) input vectors for each patch concatenated with

2 × (k + 1) weighted attentionMech2 input vectors. We are aware that this archi-

tecture increases the dimension of our input vector and some information could be

duplicated. However, it is worth testing both strategies as they reveal different cog-

nitive strategies. Therefore, the final input X vector can be defined as in Equation

4.6 for the paralArchitecture .

X = (
k⊕

i=0

watt1
1i ,

k⊕
i=0

watt1
2i ,

k⊕
i=0

(w1i, w2i)
att2,

k⊕
i=0

k⊕
j=0

cos(w1i, w2j),
k⊕

i=0

k⊕
j=0

hw1i,w2j )

(4.6)

4.6 Learning framework

In our work, word embeddings are initialized with the 300-dimensional representa-

tions of GloVe [Pennington 2014]. The similar words are extracted using the Gensim

python library3 and the PageRank algorithm is the one implemented in the Net-

workX package4. For the S, S1, S2 and HTj layers, the number of neurons per

layer is respectively 300, 100, 100 and 50. These layers share the sigmoid func-

tion as the activation function. As for the learning process, Adam [Kingma 2014]

is used as the optimizer with the default parameters of Keras [Chollet 2015]. The

network is trained with batches of 64 examples and the number of iterations is opti-

mized to maximize the F1 score on the validation set. The neural architectures are

implemented using Keras with Tensorflow [Abadi 2015] as a back-end.

3https://pypi.org/project/gensim/
4https://networkx.github.io/



Chapter 5

Results and Evaluation

Contents
5.1 Evaluation measures . . . . . . . . . . . . . . . . . . . . . . . . 25

5.2 Binary classification . . . . . . . . . . . . . . . . . . . . . . . . 26

5.2.1 RUMEN evaluation . . . . . . . . . . . . . . . . . . . . . . . 26

5.2.2 ROOT9 and Weeds evaluation . . . . . . . . . . . . . . . . . 30

5.2.3 Bless evaluation . . . . . . . . . . . . . . . . . . . . . . . . . 35

5.2.4 Balanced datasets . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3 Multi-task learning . . . . . . . . . . . . . . . . . . . . . . . . 41

5.4 Pattern features . . . . . . . . . . . . . . . . . . . . . . . . . . 43

In this chapter, we discuss the evaluation results of our models presented in

Chapter 4. These models are tested over the four datasets that we described in

Chapter 3, namely RUMEN, ROOT9, Weeds and Bless and are compared in per-

formance with the work of [Balikas 2019] and the baseline models introduced in

Chapter 3. Results are presented for both binary classification and multi-task ar-

chitectures. The introduction of the pattern-based representations is discussed in

the last section of this chapter.

5.1 Evaluation measures

To evaluate the classification performance of our models, we use the Accuracy and

the F1 score measures defined in the following equations where, TP , TN , FP and

FN respectively stand for True Positives, True Negatives, False Positives and False

Negatives.
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Accuracy =
TP + TN

TP + TN + FP + FN
(5.1)

Precision =
TP

TP + FP
(5.2)

Recall =
TP

TP + FN
(5.3)

F1 = 2× Precision× Recall
Precision+ Recall

(5.4)

5.2 Binary classification

5.2.1 RUMEN evaluation

Table 5.1 shows the results of five different experiments for binary classification for

the RUMEN dataset. In the first experiment, we set the input representation

to only the concatenation of the distributional representation of the word pair.

In the second experiment, we add the cosine similarity measure between the

given pair of words. These two experiments are considered as our baselines and the

importance of cosine similarity feature is clearly evidenced for both synonymy and

hypernymy identification. For the third experiment, the patches representation

is fed to our models (i.e. the concatenation of the distributional representation of

the word pair and its k neighbors). We vary the k parameter, i.e. the number

of neighbors to select from 1 to 10. We can notice that adding the distributional

representation of the k most similar words decreases the performance of our models.

This can be explained by the fact that the dimension of our input increases, when

we increment k and since we are dealing with GloVe vectors of dimension 300, this

could introduce noise information in the decision process. Moreover, it shows that

the simple introduction of neighbors implies a lack of focus, and as a consequence a

decrease in performance when compared to the simple concatenation of words in the

word pair. In order to evaluate the importance of our SimPatches(., .) measure, we

set our input vector in the fourth test to the concatenation of word pair embeddings

along with SimPatches(., .). We can clearly notice that the models outperform all

the previous ones for all k values and for both tasks. Compared to the second

experiment, an improvement of 1.2% in terms of accuracy (k = 6) and 1.1% in terms

of F1 score (k = 6) is obtained for the synonymy identification and an improvement

of 1.1% in terms of accuracy (k = 9) and 1.2% in terms of F1 score (k = 9) for
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the hypernymy classification. Even though the improvement values are small, we

think that SimPatches(., .) is an important feature with valuable information. To

better confirm this statement, in the fifth experiment, we concatenate the patches

representation and SimPatches(., .) measure. The results are better than those of

the third test but do not outperform the fourth test. Therefore, we can conclude

that the patches representation should be ameliorated and that our patch idea may

benefit the classification process.
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Synonym vs Random Hypernym vs Random

Inputs Acc. F1 Prec. Rec. Acc. F1 Prec. Rec.

R
U

M
E

N

Concat 0,756 0.760 0.744 0.776 0.776 0.768 0.741 0.714
Concat + cos 0,817 0,819 0,806 0,833 0,790 0,766 0,741 0,792
Patches K = 1 0,713 0,718 0,701 0,736 0,747 0,712 0,699 0,726

K = 2 0,675 0,683 0,664 0,685 0,702 0,662 0,649 0,676
K = 3 0,655 0,664 0,644 0,685 0,765 0,728 0,728 0,729
K = 4 0,684 0,697 0,666 0,730 0,757 0,723 0,713 0,734
K = 5 0,660 0,670 0,647 0,694 0,718 0,677 0,670 0,685
K = 6 0,7 0,705 0,689 0,721 0,723 0,683 0,676 0,691
K = 7 0,684 0,695 0,668 0,725 0,732 0,685 0,696 0,676
K = 8 0,684 0,687 0,676 0,697 0,731 0,687 0,691 0,682
K = 9 0,663 0,678 0,645 0,714 0,723 0,678 0,680 0,677
K = 10 0,648 0,659 0,635 0,684 0,730 0,687 0,688 0,685

Concat + SP K = 1 0,822 0,824 0,813 0,835 0,793 0,768 0,744 0,794
K = 2 0,822 0,824 0,811 0,837 0,795 0,771 0,747 0,795
K = 3 0,826 0,827 0,815 0,840 0,795 0,772 0,745 0,801
K = 4 0,828 0,828 0,821 0,835 0,790 0,767 0,737 0,799
K = 5 0,828 0,829 0,819 0,840 0,792 0,766 0,744 0,790
K = 6 0,829 0,830 0,819 0,841 0,792 0,768 0,743 0,795
K = 7 0,827 0,829 0,817 0,842 0,791 0,766 0,741 0,792
K = 8 0,823 0,824 0,814 0,834 0,794 0,769 0,745 0,795
K = 9 0,822 0,823 0,817 0,829 0,801 0,778 0,753 0,805
K = 10 0,821 0,822 0,814 0,831 0,798 0,774 0,747 0,803

Patches + SP K = 1 0,792 0,793 0,786 0,799 0,767 0,735 0,721 0,750
K = 2 0,779 0,778 0,776 0,781 0,759 0,722 0,721 0,723
K = 3 0,779 0,778 0,776 0,781 0,759 0,722 0,721 0,723
K = 4 0,779 0,778 0,776 0,781 0,759 0,722 0,721 0,723
K = 5 0,772 0,777 0,755 0,800 0,767 0,727 0,737 0,716
K = 6 0,777 0,780 0,765 0,795 0,770 0,734 0,734 0,734
K = 7 0,794 0,792 0,795 0,788 0,779 0,747 0,740 0,754
K = 8 0,778 0,785 0,758 0,814 0,781 0,738 0,766 0,711
K = 9 0,786 0,787 0,778 0,795 0,777 0,733 0,759 0,708
K = 10 0,782 0,775 0,797 0,754 0,781 0,736 0,768 0,706

Table 5.1: Accuracy, F1, Precision and Recall scores on RUMEN dataset

for binary classification. Lexical split is applied. Note that SP stands for

SimPatches(., .).

In Table 5.2, the attention mechanisms presented in Chapter 4 are included to

improve the input representation, in particular the patches representation. Indeed,

as it seems that the patch alone is noisy as it does not focus on some specific words

inside the patch, we believe that the attention mechanisms can lead to improved

results. The attentionMech1 applied on patches is first evidenced. So, our input
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is the concatenation of weighted distributional representation of patches along with

the SimPatches(., .) measure. Improved results are shown for both synonymy and

hypernymy and for all k values. In fact, the maximum performance is achieved with

k = 9 for the synonymy and with k = 2 for hypernymy. Comparing to the model

with the same inputs but without attention, we can notice 4.7% improvement in

Accuracy (k = 9) for synonymy model and 5.9% (k = 2) for hypernymy. Then,

we introduce the second attention mechanism attentionMech2, where we have two

possible architectures of models : seqArchitecture and paralArchitecture. For the

paralArchitecture architecture, no clear global improvement has occurred. This

is probably due to the increase of the dimension of our input representation and

the duplicated information we include. As for the seqArchitecture, we can observe

improved results for almost all k values. In fact, applying the second attention

mechanism on already weighted vectors boosts the classification process as it pro-

vides extra attention when looking jointly at the word pairs. The Accuracy and

the F1 score increase respectively with 2.5% and 2.4% (k = 9) for the first task

and 1.6% (k = 7) and 0.6% (k = 4) for the second task over the model with only

one attention. Note that this could also suggest an agglomerative cognitive process

rather than a flat one. Indeed, some study in Cognitive Science evidence a tree-like

structure of the brain for the acquisition of language.
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Synonym vs Random Hypernym vs Random

Inputs Acc. F1 Prec. Rec. Acc. F1 Prec. Rec.

R
U

M
E

N

Patches + SP K = 1 0,796 0,798 0,789 0,807 0,765 0,731 0,723 0,738
+ att1 K = 2 0,816 0,817 0,809 0,824 0,818 0,789 0,792 0,786

K = 3 0,813 0,810 0,818 0,803 0,807 0,774 0,781 0,768
K = 4 0,817 0,817 0,810 0,825 0,811 0,780 0,785 0,775
K = 5 0,798 0,799 0,789 0,809 0,806 0,772 0,784 0,760
K = 6 0,806 0,805 0,803 0,808 0,810 0,778 0,786 0,769
K = 7 0,819 0,816 0,827 0,805 0,812 0,776 0,798 0,756
K = 8 0,827 0,824 0,834 0,814 0,802 0,758 0,802 0,719
K = 9 0,833 0,831 0,835 0,828 0,809 0,769 0,804 0,737
K = 10 0,827 0,825 0,829 0,820 0,812 0,774 0,803 0,748

Patches + SP K = 1 0,796 0,798 0,785 0,811 0,777 0,743 0,738 0,749
+att1 + att2 K = 2 0,802 0,804 0,793 0,815 0,811 0,780 0,782 0,779
paralArchi. K = 3 0,807 0,808 0,801 0,815 0,800 0,768 0,771 0,764

K = 4 0,806 0,804 0,809 0,799 0,808 0,777 0,780 0,775
K = 5 0,804 0,806 0,792 0,821 0,809 0,774 0,793 0,757
K = 6 0,806 0,807 0,798 0,815 0,802 0,766 0,783 0,750
K = 7 0,814 0,815 0,807 0,823 0,804 0,767 0,786 0,750
K = 8 0,822 0,820 0,825 0,815 0,789 0,746 0,778 0,716
K = 9 0,830 0,827 0,839 0,814 0,808 0,767 0,805 0,733
K = 10 0,813 0,811 0,814 0,808 0,807 0,769 0,797 0,744

Patches + SP K = 1 0,840 0,834 0,856 0,813 0,806 0,774 0,778 0,770
+ att1 + att2 K = 2 0,848 0,845 0,854 0,837 0,805 0,766 0,794 0,739
seqArchi. K = 3 0,848 0,846 0,852 0,840 0,812 0,776 0,799 0,754

K = 4 0,838 0,837 0,841 0,833 0,819 0,783 0,813 0,756
K = 5 0,845 0,842 0,849 0,836 0,813 0,777 0,802 0,753
K = 6 0,848 0,843 0,863 0,824 0,815 0,774 0,817 0,735
K = 7 0,835 0,831 0,848 0,814 0,820 0,780 0,826 0,739
K = 8 0,849 0,843 0,876 0,812 0,815 0,776 0,812 0,744
K = 9 0,855 0,851 0,873 0,829 0,818 0,777 0,826 0,733
K = 10 0,847 0,842 0,864 0,821 0,813 0,770 0,822 0,725

Table 5.2: Accuracy, F1, Precision and Recall scores on RUMEN dataset

for binary classification with attention mechanisms. Lexical split is ap-

plied. Note that SP stands for SimPatches, att1 (resp. att2) stands for

attentionMech1 (resp. attentionMech2), paralArchi. for paralArchitecture

and seqArchi. for seqArchitecture.

5.2.2 ROOT9 and Weeds evaluation

Two lexico-semantic relations exist in the ROOT9 andWeeds datasets: co-hyponymy

and hypernymy. For this purpose, we evaluate these datasets together. For these

two datasets, we proceed with the same experiments as the RUMEN dataset for
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binary classification. For ROOT9, the results presented in Table 5.3 and Table 5.4

are globally similar to those obtained for the RUMEN dataset. However, we notice

improvements of 8.1% (k = 10) in terms of F1 score when we introduce patches as

input for the co-hyponymy identification model and 2.2% (k = 2) for the hypernymy

classification. For the rest, the result changes are globally similar to those with the

RUMEN dataset. The seqArchitecture remains the best architecture to include

attention in our models as we have an improvement of 3.4% of Accuracy (k = 3) for

the co-hyponymy model and 3.5% of Accuracy (k = 2) for the hypernymy model,

compared to models without attention and with the same input representation.
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Co-hyponym vs Random Hypernym vs Random

Inputs Acc. F1 Prec. Rec. Acc. F1 Prec. Rec.

R
O

O
T

9

Concat 0,907 0,938 0,949 0,888 0,852 0,895 0,901 0,927
Concat + cos 0,911 0,941 0,951 0,931 0,835 0,883 0,891 0,874
Patches K = 1 0,904 0,937 0,938 0,936 0,848 0,892 0,902 0,881

K = 2 0,894 0,929 0,937 0,922 0,876 0,913 0,908 0,918
K = 3 0,888 0,926 0,937 0,915 0,876 0,911 0,926 0,897
K = 4 0,894 0,929 0,943 0,915 0,863 0,904 0,901 0,907
K = 5 0,895 0,930 0,944 0,917 0,866 0,904 0,920 0,888
K = 6 0,904 0,937 0,944 0,929 0,873 0,908 0,931 0,886
K = 7 0,684 0,938 0,948 0,927 0,855 0,894 0,927 0,863
K = 8 0,903 0,935 0,951 0,920 0,850 0,892 0,904 0,881
K = 9 0,903 0,936 0,946 0,926 0,848 0,892 0,902 0,881
K = 10 0,911 0,941 0,948 0,935 0,850 0,893 0,904 0,881

Concat + SP K = 1 0,915 0,944 0,953 0,935 0,860 0,901 0,900 0,935
K = 2 0,915 0,944 0,953 0,935 0,885 0,919 0,919 0,935
K = 3 0,918 0,946 0,953 0,938 0,883 0,917 0,920 0,938
K = 4 0,918 0,946 0,953 0,938 0,885 0,919 0,917 0,938
K = 5 0,918 0,946 0,953 0,938 0,880 0,915 0,916 0,938
K = 6 0,915 0,944 0,953 0,935 0,883 0,917 0,922 0,935
K = 7 0,919 0,947 0,953 0,940 0,875 0,911 0,915 0,940
K = 8 0,917 0,945 0,953 0,936 0,885 0,918 0,923 0,936
K = 9 0,922 0,948 0,955 0,942 0,893 0,924 0,927 0,942
K = 10 0,926 0,951 0,955 0,947 0,888 0,921 0,923 0,947

Patches + SP K = 1 0,917 0,945 0,942 0,949 0,767 0,909 0,911 0,907
K = 2 0,912 0,942 0,945 0,940 0,896 0,927 0,918 0,937
K = 3 0,912 0,942 0,945 0,940 0,896 0,927 0,918 0,937
K = 4 0,912 0,942 0,945 0,940 0,896 0,927 0,918 0,937
K = 5 0,914 0,943 0,951 0,935 0,891 0,923 0,919 0,928
K = 6 0,916 0,945 0,948 0,942 0,903 0,931 0,938 0,923
K = 7 0,915 0,944 0,952 0,936 0,881 0,914 0,939 0,890
K = 8 0,918 0,946 0,950 0,942 0,878 0,911 0,940 0,883
K = 9 0,918 0,946 0,950 0,942 0,870 0,905 0,933 0,880
K = 10 0,920 0,946 0,957 0,936 0,873 0,908 0,934 0,884

Table 5.3: Accuracy, F1, Precision and Recall scores on Root9 dataset

for binary classification. Lexical split is applied. Note that SP stands for

SimPatches(., .).
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Co-hyponym vs Random Hypernym vs Random

Inputs Acc. F1 Prec. Rec. Acc. F1 Prec. Rec.

R
O

O
T

9

Patches + SP K = 1 0,921 0,948 0,946 0,950 0,880 0,915 0,912 0,919
+ att1 K = 2 0,921 0,947 0,949 0,947 0,908 0,936 0,925 0,946

K = 3 0,933 0,956 0,961 0,950 0,919 0,943 0,938 0,949
K = 4 0,931 0,955 0,962 0,947 0,911 0,937 0,943 0,930
K = 5 0,930 0,954 0,956 0,952 0,913 0,938 0,940 0,937
K = 6 0,933 0,956 0,959 0,952 0,918 0,941 0,948 0,935
K = 7 0,934 0,956 0,959 0,954 0,916 0,940 0,944 0,937
K = 8 0,937 0,958 0,958 0,959 0,903 0,931 0,941 0,921
K = 9 0,945 0,964 0,961 0,966 0,893 0,923 0,935 0,912
K = 10 0,940 0,960 0,963 0,957 0,891 0,922 0,937 0,907

Patches + SP K = 1 0,914 0,944 0,939 0,949 0,875 0,912 0,912 0,912
+ att1 + att2 K = 2 0,912 0,943 0,939 0,947 0,903 0,932 0,919 0,946
paralArchi. K = 3 0,922 0,950 0,944 0,954 0,906 0,934 0,927 0,942

K = 4 0,933 0,956 0,953 0,960 0,906 0,933 0,941 0,925
K = 5 0,930 0,954 0,950 0,960 0,906 0,933 0,939 0,928
K = 6 0,938 0,960 0,954 0,965 0,908 0,934 0,943 0,925
K = 7 0,933 0,956 0,953 0,960 0,898 0,928 0,932 0,923
K = 8 0,937 0,958 0,956 0,961 0,900 0,929 0,934 0,923
K = 9 0,950 0,967 0,965 0,970 0,893 0,924 0,927 0,921
K = 10 0,937 0,958 0,958 0,960 0,896 0,926 0,934 0,919

Patches + SP K = 1 0,937 0,958 0,958 0,960 0,911 0,938 0,929 0,946
+ att1 + att2 K = 2 0,938 0,959 0,956 0,963 0,931 0,952 0,941 0,963
seqArchi. K = 3 0,946 0,964 0,968 0,961 0,930 0,950 0,945 0,956

K = 4 0,945 0,963 0,971 0,956 0,916 0,941 0,940 0,942
K = 5 0,946 0,964 0,957 0,910 0,936 0,935 0,937
K = 6 0,943 0,963 0,968 0,957 0,904 0,932 0,939 0,925
K = 7 0,942 0,962 0,968 0,957 0,894 0,924 0,946 0,902
K = 8 0,940 0,961 0,966 0,956 0,891 0,921 0,950 0,893
K = 9 0,937 0,958 0,970 0,947 0,885 0,916 0,943 0,891
K = 10 0,935 0,957 0,971 0,943 0,885 0,916 0,948 0,886

Table 5.4: Accuracy, F1, Precision and Recall scores on ROOT9 dataset

for binary classification with attention mechanisms. Lexical split is ap-

plied. Note that SP stands for SimPatches(., .), att1 (resp. att2) stands for

attentionMech1 (resp. attentionMech2), paralArchi. for paralArchitecture

and seqArchi. for seqArchitecture.

We observe the same improvements for the Weeds dataset in the Table 5.5 and

the Table 5.6, when compared to RUMEN. The seqArchitecture is the best model

for both co-hyponymy and hypernymy classification. In fact, major improvements

of 8.2% in Accuracy and 19.7% in F1 score (k = 4) for the co-hyponymy and 35.4%

in Accuracy (k = 7) and 15.1% in F1 score (k = 9) for the hypernymy classification.
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To conclude, the impact of our input representation of patches and the attention

mechanisms seems bigger for the Weeds dataset than for the ROOT9 dataset, but

is at the same level of the RUMEN dataset.

Co-hyponym vs Random Hypernym vs Random

Inputs Acc. F1 Prec. Rec. Acc. F1 Prec. Rec.

W
ee

ds

Concat 0,718 0,429 0,414 0,444 0,810 0,422 0,433 0,412
Concat + cos 0,789 0,587 0,548 0,632 0,842 0,527 0,530 0,524
Patches K = 1 0,684 0,383 0,358 0,413 0,789 0,376 0,374 0,377

K = 2 0,688 0,388 0,364 0,416 0,767 0,349 0,329 0,372
K = 3 0,664 0,379 0,338 0,432 0,764 0,335 0,318 0,353
K = 4 0,686 0,383 0,359 0,410 0,765 0,357 0,330 0,387
K = 5 0,689 0,365 0,355 0,375 0,770 0,350 0,333 0,367
K = 6 0,680 0,369 0,347 0,394 0,768 0,360 0,336 0,387
K = 7 0,684 0,393 0,386 0,400 0,773 0,355 0,339 0,372
K = 8 0,711 0,406 0,397 0,416 0,782 0,350 0,351 0,348
K = 9 0,702 0,389 0,379 0,400 0,790 0,367 0,372 0,363
K = 10 0,693 0,392 0,370 0,416 0,798 0,347 0,380 0,319

Concat + SP K = 1 0,805 0,619 0,578 0,667 0,876 0,601 0,657 0,554
K = 2 0,810 0,630 0,588 0,679 0,875 0,622 0,631 0,613
K = 3 0,815 0,637 0,599 0,682 0,871 0,612 0,617 0,608
K = 4 0,823 0,654 0,612 0,701 0,894 0,637 0,748 0,554
K = 5 0,824 0,656 0,613 0,705 0,898 0,639 0,786 0,540
K = 6 0,826 0,657 0,617 0,701 0,900 0,647 0,789 0,550
K = 7 0,820 0,650 0,604 0,701 0,900 0,651 0,790 0,554
K = 8 0,838 0,666 0,655 0,676 0,900 0,653 0,786 0,559
K = 9 0,841 0,671 0,660 0,682 0,901 0,653 0,796 0,554
K = 10 0,834 0,660 0,643 0,679 0,900 0,650 0,785 0,554

Patches + SP K = 1 0,755 0,521 0,486 0,562 0,767 0,524 0,551 0,5
K = 2 0,788 0,560 0,554 0,565 0,856 0,557 0,576 0,540
K = 3 0,788 0,560 0,554 0,565 0,856 0,557 0,576 0,540
K = 4 0,788 0,560 0,554 0,565 0,856 0,557 0,576 0,540
K = 5 0,764 0,542 0,503 0,587 0,863 0,565 0,607 0,530
K = 6 0,786 0,575 0,544 0,610 0,866 0,570 0,617 0,530
K = 7 0,780 0,573 0,531 0,622 0,861 0,572 0,591 0,554
K = 8 0,786 0,580 0,543 0,622 0,870 0,582 0,627 0,544
K = 9 0,794 0,592 0,560 0,628 0,871 0,602 0,623 0,583
K = 10 0,780 0,580 0,530 0,641 0,877 0,598 0,665 0,544

Table 5.5: Accuracy, F1, Precision and Recall scores on Weeds dataset

for binary classification. Lexical split is applied. Note that SP stands for

SimPatches(., .).
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Co-hyponym vs Random Hypernym vs Random

Inputs Acc. F1 Prec. Rec. Acc. F1 Prec. Rec.

W
ee

ds

Patches + SP K = 1 0,798 0,571 0,578 0,565 0,873 0,581 0,652 0,524
+ att1 K = 2 0,823 0,624 0,632 0,616 0,886 0,629 0,696 0,573

K = 3 0,851 0,665 0,715 0,622 0,899 0,639 0,796 0,534
K = 4 0,804 0,604 0,581 0,628 0,904 0,666 0,805 0,568
K = 5 0,852 0,667 0,718 0,622 0,903 0,668 0,792 0,578
K = 6 0,838 0,653 0,664 0,641 0,901 0,663 0,776 0,578
K = 7 0,844 0,659 0,685 0,635 0,904 0,672 0,793 0,583
K = 8 0,859 0,680 0,789 0,629 0,878 0,654 0,760 0,573
K = 9 0,833 0,643 0,655 0,632 0,903 0,668 0,783 0,583
K = 10 0,845 0,664 0,686 0,644 0,900 0,663 0,768 0,583

Patches + SP K = 1 0,777 0,548 0,529 0,568 0,856 0,535 0,588 0,490
+ att1 + att2 K = 2 0,801 0,579 0,584 0,575 0,867 0,598 0,609 0,588
paralArchi. K = 3 0,839 0,651 0,672 0,632 0,890 0,610 0,750 0,515

K = 4 0,840 0,651 0,679 0,625 0,894 0,626 0,766 0,529
K = 5 0,837 0,658 0,665 0,632 0,895 0,634 0,769 0,539
K = 6 0,804 0,607 0,579 0,638 0,896 0,636 0,775 0,539
K = 7 0,809 0,611 0,592 0,632 0,896 0,638 0,771 0,544
K = 8 0,841 0,655 0,679 0,632 0,902 0,655 0,801 0,554
K = 9 0,842 0,658 0,679 0,638 0,903 0,661 0,799 0,564
K = 10 0,861 0,685 0,743 0,635 0,884 0,647 0,661 0,632

Patches + SP K = 1 0,828 0,641 0,635 0,647 0,916 0,703 0,864 0,593
+ att1 + att2 K = 2 0,847 0,676 0,683 0,670 0,913 0,702 0,822 0,613
seqArchi. K = 3 0,863 0,702 0,725 0,679 0,917 0,714 0,856 0,613

K = 4 0,870 0,713 0,751 0,679 0,923 0,736 0,872 0,637
K = 5 0,868 0,711 0,746 0,679 0,922 0,732 0,861 0,637
K = 6 0,860 0,698 0,718 0,679 0,922 0,734 0,856 0,642
K = 7 0,855 0,696 0,694 0,698 0,926 0,747 0,875 0,652
K = 8 0,853 0,693 0,691 0,695 0,926 0,751 0,861 0,667
K = 9 0,852 0,689 0,689 0,689 0,926 0,753 0,856 0,671
K = 10 0,863 0,698 0,736 0,663 0,923 0,752 0,824 0,691

Table 5.6: Accuracy, F1, Precision and Recall scores on Weeds dataset

for binary classification with attention. Lexical split is applied. Note that

SP stands for SimPatches(., .), att1 (resp. att2) stands for attentionMech1

(resp. attentionMech2), paralArchi. for paralArchitecture and seqArchi.

for seqArchitecture.

5.2.3 Bless evaluation

For the Bless dataset, the lexico-semantic relations that need to be learned are

meronomy and hypernymy (both asymmetric relations). Results of experiments are

reported in Table 5.7 and the Table 5.8. Unlike the other datasets, we can notice
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a considerable increase of F1 score (17.1%) for the hypernymy learning model. An

increase of 4.1% of Accuracy is also reported in the Table 5.7 comparing to the

second experiment. Moreover, the introduction of patches gives similar results than

without neighbors for the meronymy learning model. Then, we can clearly observe

the impact of adding the SimPatches(., .) feature in our input as it boosts the

classification process. By observing the results in Table 5.8, we lead to the same

conclusion, that including the attention sequentially is better than in a parallel way.

Compared to the models without attention, we have an improvement of 1.1% in

terms of F1 score for the meronymy model (k = 6) and an improvement of 5.9% in

terms of F1 score for the hypernymy model (k = 2).
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Meronym vs Random Hypernym vs Random

Inputs Acc. F1 Prec. Rec. Acc. F1 Prec. Rec.

B
le

ss

Concat 0,844 0,757 0,804 0,716 0,868 0,468 0,515 0,429
Concat + cos 0,862 0,785 0,833 0,743 0,881 0,521 0,568 0,481
Patches K = 1 0,842 0,752 0,806 0,706 0,916 0,672 0,712 0,635

K = 2 0,840 0,752 0,796 0,712 0,922 0,692 0,742 0,647
K = 3 0,848 0,764 0,808 0,725 0,913 0,624 0,743 0,538
K = 4 0,842 0,752 0,806 0,706 0,895 0,533 0,670 0,442
K = 5 0,844 0,756 0,813 0,706 0,899 0,552 0,686 0,462
K = 6 0,838 0,746 0,805 0,694 0,894 0,498 0,685 0,391
K = 7 0,684 0,739 0,805 0,685 0,889 0,498 0,634 0,410
K = 8 0,834 0,737 0,799 0,685 0,891 0,475 0,678 0,365
K = 9 0,831 0,726 0,809 0,657 0,887 0,452 0,651 0,346
K = 10 0,831 0,730 0,801 0,671 0,892 0,494 0,670 0,391

Concat + SP K = 1 0,877 0,811 0,853 0,774 0,904 0,602 0,683 0,538
K = 2 0,877 0,811 0,849 0,776 0,905 0,623 0,669 0,583
K = 3 0,879 0,816 0,849 0,785 0,913 0,653 0,712 0,602
K = 4 0,878 0,814 0,850 0,781 0,933 0,741 0,780 0,705
K = 5 0,882 0,820 0,853 0,789 0,929 0,717 0,776 0,667
K = 6 0,884 0,824 0,851 0,799 0,932 0,735 0,783 0,692
K = 7 0,887 0,828 0,860 0,799 0,933 0,739 0,784 0,698
K = 8 0,887 0,829 0,857 0,803 0,912 0,653 0,695 0,615
K = 9 0,883 0,823 0,849 0,799 0,915 0,671 0,704 0,641
K = 10 0,881 0,818 0,853 0,785 0,917 0,676 0,714 0,641

Patches + SP K = 1 0,863 0,785 0,841 0,737 0,767 0,700 0,736 0,667
K = 2 0,859 0,785 0,816 0,756 0,939 0,759 0,806 0,718
K = 3 0,859 0,785 0,816 0,756 0,939 0,759 0,806 0,718
K = 4 0,859 0,785 0,816 0,756 0,939 0,759 0,806 0,718
K = 5 0,880 0,818 0,847 0,791 0,922 0,681 0,762 0,615
K = 6 0,879 0,815 0,852 0,781 0,924 0,667 0,815 0,564
K = 7 0,881 0,818 0,855 0,785 0,916 0,645 0,752 0,564
K = 8 0,872 0,805 0,837 0,776 0,919 0,649 0,789 0,551
K = 9 0,873 0,802 0,857 0,754 0,919 0,652 0,784 0,558
K = 10 0,865 0,791 0,841 0,747 0,917 0,647 0,758 0,564

Table 5.7: Accuracy, F1, Precision and Recall scores on Bless dataset

for binary classification. Lexical split is applied. Note that SP stands for

SimPatches(., .).
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Meronym vs Random Hypernym vs Random

Inputs Acc. F1 Prec. Rec. Acc. F1 Prec. Rec.

B
le

ss

Patches + SP K = 1 0,863 0,788 0,831 0,750 0,926 0,713 0,743 0,686
+ att1 K = 2 0,867 0,795 0,834 0,760 0,939 0,763 0,807 0,724

K = 3 0,892 0,834 0,878 0,795 0,949 0,794 0,870 0,731
K = 4 0,891 0,831 0,884 0,783 0,928 0,698 0,807 0,615
K = 5 0,892 0,831 0,889 0,779 0,932 0,715 0,830 0,628
K = 6 0,890 0,826 0,894 0,768 0,932 0,717 0,825 0,635
K = 7 0,890 0,826 0,896 0,766 0,930 0,701 0,826 0,609
K = 8 0,890 0,826 0,892 0,770 0,932 0,706 0,841 0,609
K = 9 0,896 0,835 0,905 0,776 0,934 0,714 0,864 0,609
K = 10 0,894 0,832 0,904 0,769 0,932 0,707 0,854 0,602

Patches + SP K = 1 0,867 0,793 0,846 0,747 0,926 0,695 0,788 0,622
+ att1 + att2 K = 2 0,880 0,814 0,863 0,770 0,948 0,798 0,838 0,763
paralArchi. K = 3 0,889 0,835 0,850 0,820 0,944 0,778 0,832 0,731

K = 4 0,887 0,831 0,843 0,820 0,929 0,709 0,794 0,641
K = 5 0,885 0,828 0,848 0,808 0,932 0,721 0,814 0,647
K = 6 0,884 0,819 0,875 0,770 0,934 0,725 0,833 0,641
K = 7 0,884 0,817 0,881 0,762 0,932 0,713 0,824 0,628
K = 8 0,888 0,826 0,876 0,781 0,930 0,701 0,826 0,609
K = 9 0,893 0,832 0,891 0,779 0,932 0,702 0,853 0,596
K = 10 0,892 0,832 0,884 0,785 0,930 0,699 0,832 0,602

Patches + SP K = 1 0,894 0,832 0,910 0,766 0,945 0,776 0,854 0,711
+ att1 + att2 K = 2 0,889 0,826 0,881 0,777 0,955 0,822 0,882 0,769
seqArchi. K = 3 0,886 0,817 0,902 0,747 0,956 0,821 0,907 0,75

K = 4 0,888 0,821 0,899 0,756 0,946 0,769 0,920 0,660
K = 5 0,891 0,825 0,911 0,754 0,942 0,751 0,894 0,647
K = 6 0,898 0,837 0,915 0,772 0,941 0,746 0,893 0,641
K = 7 0,889 0,820 0,916 0,743 0,942 0,747 0,908 0,635
K = 8 0,882 0,811 0,891 0,745 0,940 0,733 0,922 0,609
K = 9 0,887 0,815 0,922 0,731 0,934 0,703 0,9 0,577
K = 10 0,889 0,818 0,920 0,737 0,932 0,683 0,914 0,545

Table 5.8: Accuracy, F1, Precision and Recall scores on Bless

dataset for binary classification with attention. Note that SP stands

for SimPatches(., .), att1 (resp. att2) stands for attentionMech1 (resp.

attentionMech2), paralArchi. for paralArchitecture and seqArchi. for se-

qArchitecture.

5.2.4 Balanced datasets

The RUMEN dataset is already balanced. For the three other datasets, we report in

Table 5.9, the results of each input representation for the k value that contributed

to the best result per model in previous tables. The reported results show simi-
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lar tendencies to previous ones with unbalanced datasets. Indeed, the model with

sequential attention remains the top-performing model when compared against base-

lines.
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Co-hyponym vs Random (k=3) Hypernym vs Random(k=2)

Inputs Acc. F1 Prec. Rec. Acc. F1 Prec. Rec.

R
O

O
T

9_
ba

l Concat 0,872 0,876 0,889 0,863 0,839 0,829 0,809 0,85
Concat + cos 0,877 0,881 0,890 0,872 0,847 0,834 0,836 0,831
Patches 0,867 0,871 0,884 0,858 0,847 0,837 0,824 0,850
Concat + SP 0,905 0,909 0,911 0,907 0,873 0,864 0,854 0,875
Patches + SP 0,885 0,889 0,891 0,887 0,864 0,856 0,838 0,875
Patches + att1 + SP 0,897 0,902 0,902 0,902 0,879 0,870 0,860 0,881
Patches + att1 + att2 + SP 0,897 0,901 0,910 0,892 0,870 0,861 0,853 0,868
paralArchi.

Patches + att1 + att2 + SP 0,921 0,922 0,943 0,902 0,905 0,896 0,899 0,894
seqArchi.

Co-hyponym vs Random (k=4) Hypernym vs Random (k=7)

Algorithm Acc. F1 Prec. Rec. Acc. F1 Prec. Rec.

W
ee

ds
_

ba
l Concat 0,571 0,581 0,561 0,602 0,653 0,645 0,631 0,659

Concat + cos 0,597 0,604 0,586 0,623 0,672 0,665 0,649 0,681
Patches 0,617 0,618 0,609 0,628 0,672 0,670 0,644 0,698
Concat + SP 0,728 0,726 0,724 0,728 0,821 0,804 0,846 0,765
Patches + SP 0,607 0,616 0,595 0,639 0,771 0,767 0,743 0,793
Patches + att1 + SP 0,757 0,753 0,756 0,748 0,848 0,832 0,881 0,788
Patches + att1 + att2 + SP 0,718 0,720 0,707 0,733 0,808 0,798 0,802 0,793
paralArch.

Patches + att1 + att2 + SP 0,757 0,742 0,780 0,707 0,853 0,839 0,883 0,799
seqArchi.

Meronym vs Random (k=6) Hypernym vs Random (k=2)

Algorithm Acc. F1 Prec. Rec. Acc. F1 Prec. Rec.

B
le

ss
_

ba
l

Concat 0,814 0,836 0,853 0,819 0,906 0,929 0,929 0,929
Concat + cos 0,833 0,854 0,866 0,842 0,911 0,933 0,929 0,937
Patches 0,810 0,830 0,860 0,802 0,916 0,937 0,937 0,937
Concat + SP 0,882 0,899 0,893 0,904 0,916 0,937 0,930 0,945
Patches + SP 0,846 0,868 0,861 0,876 0,921 0,940 0,944 0,936
Patches + att1 + SP 0,856 0,875 0,880 0,870 0,918 0,938 0,944 0,933
Patches + att1 + att2 + SP 0,853 0,873 0,871 0,876 0,929 0,947 0,941 0,952
paralArchi.

Patches + att1 + att2 + SP 0,872 0,884 0,931 0,842 0,908 0,929 0,954 0,905
seqArchi.

Table 5.9: Accuracy, F1, Precision and Recall scores on Bless dataset

for binary classification. Note that SP stands for SimPatches(., .), att1
(resp. att2) stands for attentionMech1 (resp. attentionMech2), paralArchi.

for paralArchitecture and seqArchi. for seqArchitecture.
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5.3 Multi-task learning

For the multi-task learning, we report the results of the baseline work presented in

Chapter 3 (without the pattern representations) in Table 5.10 for ROOT9 andWeeds

datasets. These results prove that almost all multi-task architectures outperform

the baseline binary classification ones and the best results on average are obtained

for the Multiple Shared-private model. Therefore, we implement this model with

our input representation (i.e. patches representation with attention mechanisms

and SimPatches(., .) feature). The results are shown in Table 5.11 for ROOT9

and in the Table 5.12 Weeds datasets. For the ROOT9 dataset, we can notice that

the performance of the model is enhanced for both tasks. However, for the Weeds

dataset, the improvement is with a tiny margin on average. We believe that these

models and architectures could lead to better results with some parameter tuning

and optimization.

Co-hyponym vs Random Hypernym vs Random Average Two Tasks

Algorithm Acc. F1 Acc. F1 Acc. F1

R
O

O
T

9

Binary - Concat + cos 0,911 0,941 0,835 0,883 0,873 0,912
Fully-shared 0,902 0,935 0,835 0,882 0,868 0,909
Single Shared-private 0,916 0,945 0,860 0,904 0,888 0,924
Multiple Shared-private 0,922 0,949 0,865 0,903 0,893 0,926

Co-hyponym vs Random Hypernym vs Random Average Two Tasks

Algorithm Acc. F1 Acc. F1 Acc. F1

W
ee

ds

Binary - Concat + cos 0,789 0,587 0,842 0,527 0,815 0,557
Fully-shared 0,810 0,627 0,871 0,616 0,841 0,621
Single Shared-private 0,825 0,667 0,860 0,635 0,842 0,651
Multiple Shared-private 0,824 0,657 0,865 0,651 0,844 0,654

Table 5.10: Accuracy, F1, Precision and Recall scores on ROOT9 and

Weeds datasets for two-task architectures.
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Co-hyponym vs Random Hypernym vs Random Average Two Tasks

Algorithm Acc. F1 Acc. F1 Acc. F1

R
O

O
T

9

Multiple Shared-private K = 1 0,930 0,954 0,875 0,911 0,902 0,933
K = 2 0,929 0,953 0,904 0,934 0,916 0,943
K = 3 0,916 0,945 0,899 0,929 0,908 0,937
K = 4 0,918 0,946 0,909 0,936 0,914 0,941
K = 5 0,922 0,948 0,893 0,925 0,907 0,937
K = 6 0,916 0,945 0,893 0,923 0,905 0,934
K = 7 0,923 0,949 0,888 0,919 0,906 0,934
K = 8 0,927 0,952 0,889 0,921 0,908 0,937
K = 9 0,922 0,948 0,885 0,917 0,903 0,933
K = 10 0,926 0,951 0,889 0,921 0,908 0,936

Multiple Shared-private K = 1 0,947 0,966 0,913 0,939 0,930 0,952
seqArchi. K = 2 0,938 0,959 0,916 0,941 0,927 0,950

K = 3 0,942 0,962 0,923 0,945 0,932 0,954
K = 4 0,930 0,954 0,909 0,935 0,934 0,944
K = 5 0,934 0,956 0,903 0,930 0,918 0,943
K = 6 0,934 0,956 0,908 0,934 0,921 0,945
K = 7 0,941 0,961 0,899 0,927 0,920 0,944
K = 8 0,937 0,958 0,896 0,924 0,916 0,941
K = 9 0,937 0,958 0,913 0,937 0,925 0,947
K = 10 0,941 0,961 0,894 0,923 0,917 0,942

Table 5.11: Accuracy and F1 scores on ROOT9 dataset for Multiple

Shared-private model with patches (seqArchi.).
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Co-hyponym vs Random Hypernym vs Random Average Two Tasks

Algorithm Acc. F1 Acc. F1 Acc. F1

W
ee

ds

Multiple Shared-private K = 1 0,817 0,643 0,894 0,650 0,856 0,647
K = 2 0,848 0,686 0,888 0,658 0,868 0,672
K = 3 0,847 0,670 0,894 0,691 0,871 0,680
K = 4 0,837 0,672 0,888 0,673 0,862 0,672
K = 5 0,832 0,656 0,889 0,678 0,861 0,667
K = 6 0,833 0,672 0,890 0,685 0,862 0,679
K = 7 0,837 0,677 0,885 0,668 0,861 0,673
K = 8 0,841 0,678 0,898 0,696 0,869 0,687
K = 9 0,825 0,661 0,884 0,667 0,855 0,664
K = 10 0,836 0,668 0,885 0,671 0,861 0,670

Multiple Shared-private K = 1 0,835 0,678 0,909 0,722 0,872 0,700
seqArchi. K = 2 0,831 0,666 0,893 0,687 0,862 0,676

K = 3 0,833 0,660 0,888 0,682 0,861 0,671
K = 4 0,820 0,659 0,887 0,685 0,853 0,672
K = 5 0,833 0,671 0,904 0,715 0,868 0,693
K = 6 0,828 0,660 0,904 0,711 0,866 0,685
K = 7 0,834 0,673 0,906 0,719 0,870 0,696
K = 8 0,832 0,663 0,901 0,704 0,866 0,684
K = 9 0,829 0,661 0,906 0,713 0,867 0,687
K = 10 0,836 0,673 0,900 0,687 0,868 0,680

Table 5.12: Accuracy and F1 scores on Weeds dataset for Multiple

Shared-private model with patches (seqArchi.).

5.4 Pattern features

In order to extract the patterns between word pairs, we followed the same process

as the baseline work introduced in 3. In fact, we downloaded the English Wikipedia

dump and we extracted a large representative corpus of 14Gb. After pre-processing

this corpus, we keep only the patterns that do not exceed a maximum length of 10

words. Since we include the k most similar words to our word pair in the input

representation, we also include their patterns. For instance, if we have k = 5 neigh-

bors for each word in the pair, 25 pairs are constructed and patterns are searched

for each pair. Unfortunately, this process took more time than expected (more than

one month) so, we didn’t get the time to incorporate these patterns into our input

representation. However, we introduce in Chapter 6, the main ideas we have to

include these patterns and to encode them as well.



Chapter 6

Conclusions and Future Work

In our work, we presented a new way of defining the distributional and the pattern-

based representations of learning models for the identification of lexico-semantic

relations that hold between words. These representations are evaluated with both

binary classification architectures and multi-tasking ones. Indeed, we follow the

same architectures as a baseline work [Balikas 2019] but with new input configura-

tions. The main idea behind our work is to explore the patch notion, used in the

Computer Vision, in NLP models and applications.

The patch representation consists of including the distributional representations

of the k most similar words (i.e. neighbors) in terms of cosine similarity measure

into the input representation of word pairs. This way, 2× (k+1) embedding vectors

(GloVe vectors of dimension 300 in our case) form the input of our classification

models. We introduce as well a new similarity measure between patches, which is

an extension to the cosine similarity measure between words.

Evaluation results over four gold-standard datasets (RUMEN, ROOT9, Weeds

and Bless) prove the importance of this feature. As for the patches, attention mech-

anisms were necessary to guide the neural networks in distinguishing the valuable

information from the extra large input vector fed. The seqArchitecture model out-

performs the other models for both binary and multi-task classification.

We believe that including the adapted pattern-based representation to our work

may benefit the classification performance. Indeed, once the patterns of the differ-

ent pairs of words (all the possible combinations for words and their neighbors) are

extracted, we can have multiple possibilities to encode them. Indeed, we can keep

only the most frequent pattern for each pair of words or keep only the most frequent

pattern for all pairs and get a single representation after using a BiLSTM encoding.

In the first case, multiple representations for patterns are collected (a BiLSTM en-

coding for each pattern). We can get the average of these representations to include

it to the input vector or the concatenation of all these representations directly.
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Another possibility to do with respect of input representation is to encode indi-

vidual words in patterns with contextual embeddings such as BERT [Devlin 2018]

or ELMo [Peters 2018]. This may positively impact performance.

Since we couldn’t conduct any conclusion regarding the right k value to choose,

we believe that we need to include it as a parameter of the neural network to

learn automatically, in particular for multi-task strategies. Optimization and tuning

strategies need to be established in order to get the best results possible.

As for the attention mechanisms, other strategies than the PageRank algorithm

could be used :

• Include the attention mechanism in the learning process of the neural networks

architectures, to learn each vector importance automatically.

• Include both variable (learned) attention values and fixed ones (PageRank),

similarly to a supervised process.

These attention mechanisms could also be used in LSTM or CNN architectures

rather than using just the concatenation. Therefore, different configurations of

LSTM and CNN architectures are to consider.

Finally, we would like to enhance the performance of our binary and multi-task

classification strategies by integrating visual features. This will lead to a multimodal

system. The underlying idea is to have a visual input representation for the word

pair and its neighbors similarly to the textual representation. We can integrate an

image for each word (e.g. from ImageNet [Russakovsky 2015]) as a visual feature.

We can also look for a SimPatches(., .) notion in images (i.e. an image representing

the pair of words or the background of an image containing these two words, etc.)

Our work and these future studies will soon be described in a publication in-

tended for the European Conference on Information Retrieval (ECIR 2020)1.

1https://ecir2020.org/
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