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ABSTRACT

Building reliable environment perception systems is a crucial task for autonomous driv-
ing, especially in dense traffic areas. Researching in this field is evolving increasingly.
However, we are at the beginning of a research pathway towards a future generation of
intelligent transportation systems. In fact, challenging conditions in real-world driving
circumstances, infrastructure monitoring, and accurate real-time system response, are
the predominant concerns when developing such systems.

Recent improvements and breakthroughs in scene understanding for intelligent trans-
portation systems have been mainly based on deep learning and the fusion of different
modalities.

In this context, firstly, we introduce OLIMP! : A heterOgeneous MuLtimodal Dataset
for Advanced EnvIronMent Perception . This is the first public, multimodal and synchro-
nized dataset that includes Ultra Wide-Band (UWB) radar data, acoustic data, narrow-
band radar data and images. OLIMP comprises 407 scenes and 47,354 synchronized
frames, including four categories: pedestrians, cyclists, cars and trams. The dataset
presents various challenges related to dense urban traffic such as cluttered environments
and different weather conditions. To demonstrate the usefulness of the introduced dataset,
we propose, afterwards, a fusion framework that combines the four modalities for multi
object detection. The obtained results are promising and spur for future research.

In short range settings, UWB radars represent a promising technology for building reli-
able obstacle detection systems as they are robust to environmental conditions. However,
UWRB radars suffer from a segmentation challenge: localizing relevant Regions Of In-
terests (ROIs) within its signals. Therefore, we put froward a segmentation approach to
detect ROIs in an environment perception-dedicated UWB radar as a third contribution.
Specifically, we implement a differential entropy analysis to detect ROIs. The obtained
results show higher performance in terms of obstacle detection compared to state-of-the-
art techniques, as well as stable robustness even with low amplitude signals.
Subsequently, we propose a novel framework that exploits Recurrent Neural Networks
(RNNs) with UWB signals for multiple road obstacle detection as a deep learning-based
approach. Features are extracted from the time-frequency domain using the discrete
wavelet transform and are forwarded to the Long short-term memory (LSTM) network.

1https ://sites.google.com/view/ihsen-alouani/datasets
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The obtained results show that the LSTM-based system outperforms the other imple-
mented related techniques in terms of obstacle detection.

Keywords: Intelligent transportation systems; Public dataset; Multi-modality; Fusion;
Object detection; UWB radar; Entropy; Segmentation; Deep learning; LSTM.



RESUME

Une perception fiable de I’environnement est une tache cruciale pour la conduite auto-
nome, en particulier dans les zones de trafic dense. La recherche dans ce domaine évolue
de plus en plus. Cependant, nous sommes au début d’une voie de recherche vers une
future génération de systemes de transport intelligents. En effet, les principales préoc-
cupations lors du développement de tels systemes sont les conditions de la conduite, la
surveillance des infrastructures et la réponse précise du systeme en temps réel.

Les récentes améliorations et percées dans la compréhension de I’environnement pour
les systemes de transport intelligents reposent principalement sur 1’apprentissage pro-
fond et la fusion de différentes modalités.

Dans ce contexte, tout d’abord, nous introduisons OLIMP: A heterOgeneous MuLtimodal
Dataset for Advanced EnvIronMent Perception !. C’est la premiére base de données
public, multimodale et synchronisée qui comprend des données radar ultra large bande
(ULB), des données acoustiques, des données radar a bande étroite et des images. OLIMP
comprend 407 scenes et 47 354 données synchronisées, dont quatre catégories: piétons,
cyclistes, voitures et tramways. L’ensemble de données présente divers défis liés au trafic
urbain dense, tels que des environnements encombrés et des conditions météorologiques
différentes. Pour démontrer 1’utilité de la base introduite, nous proposons, par la suite,
un framework de fusion qui combine les quatre modalités pour la détection multi-objets.
Les résultats obtenus sont prometteurs et incitent a de futures recherches.

Dans les applications a courte portée, les radars ULB représentent une technologie pro-
metteuse pour la construction de systemes de détection d’obstacles fiables car ils sont
robustes aux conditions environnementales. Cependant, ces radars souffrent d’un défi
de segmentation: localiser les régions d’intérét (ROIs) pertinentes dans ses signaux. Par
conséquent, nous mettons en avant une approche de segmentation pour détecter les ROIs
dans un environnement dédi€ a la perception de I’environnement c’est la troisiéme contri-
bution. Plus précisément, nous mettons en ceuvre une analyse d’entropie différentielle
pour détecter les ROIs. Les résultats obtenus montrent des performances supérieures
en termes de détection d’obstacles par rapport aux techniques de 1I’état de 1’art, et une
robustesse méme avec des signaux de faible amplitude.

Par la suite, nous proposons un nouveau framework basée sur 1’ apprentissage profond qui
exploite le réseau de neurones récurrents avec les signaux ULB pour la détection multiple

1https ://sites.google.com/view/ihsen-alouani/datasets
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d’obstacles routiers. Les caractéristiques sont extraites du domaine temps-fréquence a
I’aide de la transformée en ondelettes discrete et sont transmises au réseau récurrent a
mémoire courte et long terme. Les résultats obtenus montrent que le systeéme basé sur
I’LSTM surpasse les autres techniques implémentées en termes de détection d’obstacles.

Mots-clés: Systemes de transport intelligents; Base de données public; Multi-modalité;
La fusion; Détection d’objets; Radar ULB; Entropie; Segmentation; L’ apprentissage pro-
fond; LSTM.
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1.1 THESIS CONTEXT

The main human capacities are the power and adaptability of our brain to process

and interpret data acquired from our senses. While the human visual cortex is precise
in processing the received information, humans can classify and locate complex objects
that surround them by characterizing the objects’ shapes, colors and orientations. Fur-
thermore, humans are able to continuously analyze their environment and scan for new
objects in their surroundings.
With the speedy ascension of Artificial Intelligence (Al), researchers aim to develop
intelligent systems that efficiently imitate the human perception. To be accurate and reli-
able, these systems must consider several constraints that are spontaneously handled by
the human brain. Autonomous vehicles (AVs) are one of the most important developed
Intelligent Transportation Systems (ITSs) for the recent years. These vehicles require
to perceive their environments like humans. Thus, the environment perception task is
considered as one of the prominent fields of research.

1.1 THESIS CONTEXT

Traffic congestion has been increasing worldwide, which is caused mainly by the ex-
pansion of number of road users. This leads to a rising number of road accidents and
fatalities, which definitely threats the quality of urban life.

Currently road injuries is estimated to be the seventh leading cause of death for all
age groups globally, and it is ranked first for people aged between 10 and 24 years old
[168]. According to the World Health Organization (WHO) [139], road traffic crashes
generate a loss of over than 1.35 million lives per year, where 54% are vulnerable road
users. Moreover, they cause non-fatal injuries for almost 50 million people all over the
world each year. From another point of view, these road traffic causalities account for
23% of all injury deaths worldwide in accordance to the distribution related to the global
injury mortality via cause, as illustrated in figure 1.1 [121].

Furthermore, economically, road injuries engender considerable economic losses since
they cost most countries around 3% of their gross domestic product [139].

Based on the statistics reported by the National Highway Traffic Safety Administration
(NTHSA) [138] in 2018, 94Y%0 of the road accidents are principally linked to human
errors. These errors are caused mainly by fatigue, heedlessness and immature behavior
(as immature driving, distraction when using the phone, etc.) according to information
about crashes reported by the police [138].

For these reasons, AVs have been introduced in order to import an eloquent change for
drivers, road users, infrastructure and pollution to contribute to fuel savings.
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Figure 1.1: Distribution of global injury mortality by cause according to WHO Global Burden
of Disease project [121].

Despite the fact that AVs aim to avoid accidents and provide economic, comfortable

and intelligent driving, the development of such systems is highly complex. This is
due to the permanent changes of the vehicle’s environment that includes weather and
illumination conditions, as well as the type of the obstacles and the behavior of road
users.
However, with the recent improvements and breakthroughs of Al, which relies on the
appearance of machine and deep learning algorithms, as well as the availability of
new sensor modalities, AVs achieve huge progress. Thus, sophisticated driver assistance
technologies have been developed to ensure road safety [ 148] such as collision avoidance,
driver assistance and driver behavior monitoring systems[74] [75] [81].

In fact, most of the proposed solutions require robust environment perception, es-
pecially in urban circumstances, and rely on the object detection process to prevent
accidents and to protect, inter alia, vulnerable road users such as pedestrians and cy-
clists.

To achieve such requirements, object detection exploring sensors’ fusion remains essen-
tial because the AV perception capability can exceed that of human drivers particularly
in degraded conditions.

As the employed sensors offer complementary data and their collaboration can guar-
antee a better scene understanding and since training deep learning algorithms requires

huge datasets, developing accurate and robust object detectors is a primary challenge in
the AV field.

3



1.2 MOTIVATIONS AND OBJECTIVES

1.2 MOTIVATIONS AND OBJECTIVES

A long list of companies are interested in developing AVs and aim to launch highly
automated vehicles by improving software capabilities and safety, like Audi, Google,
Bosch, Nvidia, etc.

Despite the fact that AVs have shown immense progress during the last few years,
there have been 13 serious car crashes using the autonomous mode or the autopilot
mode [35]. Some of these crashes are shown in figure 1.2. On February 14th, 2016, the
Google’s AV commits its first crash with a bus while lane changing [32]. One of the
most critical of these serious accidents took place when the Tesla’s Model X car driving
in an autopilot mode had a collision with a highway barrier in California in 2018 [34].
This collision resulted in killing the driver. Accordingly, with the implication of Tesla
with a number of other fatal crashes, the National Transportation Safety Board (NTSB)
declared that both autopilot and driver errors were factors in these car accidents. Also,
the Hyundai self-driving car crashed because of rain [33].

, ,
Google’s car Tesla’s car Uber’s car

Figure 1.2: Serious crashes caused by AV.

Based on these reported fatal crashes that involve self-driving cars, the autonomous
driving in urban roads remains an open and a challenging problem. In fact, the envi-
ronmental variables, which vary from weather conditions to the surrounding human
behaviors, are extremely indeterministic and difficult to predict.

For these reasons and since system failures lead to catastrophic accidents and fatalities,
the improvements of object detectors and the development of new algorithms are still an
inevitable process.

For the detection stage, most of the companies use either a unique sensor or a combina-
tion of modalities such as the camera, the lidar, the radar, etc. While cameras are limited
to bad weather conditions, the radar is robust and provides additional information about



1.3 CONTRIBUTIONS

the objects’ characteristics (as the distance and the velocity) which can reduce fatal errors.
Thus, the combination of various sensor types can make a significant enhancement.

Datasets are decisive for researchers and developers as most of the tools and algorithms
have to be tested and then trained before functioning on the road. A typical practice
consists in testing and validating the developed algorithms on annotated datasets.

In this context, various autonomous driving datasets have been published in order to

enhance reasarch for environment perception such as Kitti [55], Kaist Multi-Spectral
[30], nuScene [20], etc. Most of these datasets are multimodal, combining different
heterogeneous modalities.
While some of the existing datasets use the narrow-band radar, UWB carries richer
information. The UWB radar provides a signal that results from the reflection of a
transmitted UWB pulse on the object. The deformation of the initial wave represents
the signature of the object. This signature contains information about the distance, the
material and the shape of the object. In fact, the UWB radar offers a huge interest in short-
range applications, but its employment addresses a main challenge which distinguishes
the target over noise and static clutter.

From another point of view, different objects have distinguishable acoustic signatures
that may help recognize each of them. In spite of the usefulness of the acoustic data, we
notice that none of the-state-of-the-art ITSs benchmarks use the acoustic modality.

Moreover, nowadays, the employment of deep learning remains unavoidable when
developing object detection systems due to the achieved success in this area of research.
Therefore, in order to increase accuracy and provide tangible improvements, we have
to cope with their complexity. Further, training such algorithms needs huge amounts of
data. For these reasons and motivated by the fact that current databases lack in radar and
acoustic sensors adoption, the development of new ones is required.

1.3 CONTRIBUTIONS

In this thesis, we propose a new multi-object detection framework by exploring either
uni-modality or multi-modality via developing a multi-modal dataset for advanced urban
environment perception.

In order to achieve the thesis aim, the contributions of this work are as follows:
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1. The first contribution consists in developing OLIMP (A HeterOgeneous MuL-
timodal Dataset for Advanced EnvIronMent Perception) with over than 47,000
samples. It is a new heterogeneous dataset collected using a camera, a UWB
radar, a narrow-band radar and a microphone. To the best of our knowledge, this
is the first dataset that includes UWB signals and acoustic data including several
challenges related to dense urban traffic. Thus, potential advancement could be
accomplished in the environment perception area using our dataset.

2. Our second contribution consists in proposing a new fusion framework that com-
bines data acquired from the different sensors used in the introduced dataset in
order to achieve better performances for the obstacle detection task. This fusion
framework demonstrates the usefulness of the introduced dataset and it mainly
highlights the importance of multimodality in environment perception.

3. A segmentation approach to detect ROIs in an environment perception-dedicated
UWB radar is our third contribution. Specifically, we implement a differential
analysis of the entropy of UWB signals to detect ROIs. We evaluate our technique
on OLIMP. The obtained results show higher performance in terms of obstacle
detection compared to the implemented state-of-the-art techniques, as well as
stable robustness even with low amplitude signals.

4. The fourth contribution is a novel framework that exploits RNNs with UWB
signals for the detection of multiple road obstacles. We evaluate our approach on
the OLIMP dataset. The obtained results show that the system outperforms the
other implemented related techniques in terms of obstacle detection by learning
the temporal relationship between the data sequences.

14 THESIS OUTLINE

This document is organized as follows.

In chapter 2, the state of the art is presented by firstly putting the topic of object detec-
tion and environment perception into context with the autonomous driving. In addition,
the exploited sensors and the relative main challenges will be detailed. Afterwards, we
review road object detectors using uni-modal and multi-modal systems by explaining
the possible fusion levels.
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Chapter 3 presents the developed dataset. This chapter goes further into the implemen-
tation details in terms of employed sensors, synchronisation setup, annotation process
and relative challenges. In addition to this, a fusion framework exploiting different fusion
levels is presented to highlight the potential enhancement that can be achieved using the
introduced dataset.

The following chapter goes deeper into investigating the UWB radar. In chapter 4, two
UWB-based detectors are proposed. The first detector aims to segment obstacles within
UWRB signals via an entropy-based approach. Regarding the second framework, it is a
deep-based detector that takes advantage of the LSTM network to distinguish noise from
real targets. A comparative study with the state-of-the-art techniques is conducted, and
the obtained results are discussed in this chapter.

Finally, chapter 5 presents the conclusion of this thesis and some perspectives.

7
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2.1 INTRODUCTION

2.1 INTRODUCTION

In this chapter, we firstly present the state of the art relative to environment perception
systems including road object detection for intelligent and AVs. The relevant sensors and
the fusion challenges are described. Afterwards, a detailed overview of object detection
methods is exposed.

This chapter is organized as follows. Section 2 presents an environment perception
background that includes the Advanced Driver Assistance System (ADAS) applications,
the employed sensors and the challenges related to the vehicle’s surroundings perception
task. Section 3 exhibits a review of object detectors from one uni-modal system to multi-
modal systems for road obstacles. The performance evaluation metrics of the detectors
are detailed in Section 4. Finally, section 5 refers to the conclusion of this chapter.

2.2 ENVIRONMENT PERCEPTION BACKGROUND

According to the WHO, every day, around 3,700 people are killed in road traffic crashes
and over than half of those are vulnerable road users: pedestrians, cyclists, motorcyclists,
drivers [139]. Existing surveys point out that the human errors are one of the principal
causes of road accidents. These errors can be distinguished in fatigue, heedlessness and
immature behaviors. For this reason, it becomes critical to equip vehicles with safety
systems to provide security to drivers and vulnerable road users.

Aside from these mentioned consequences, road accidents have additional undesir-
able side effects. They are identified as a considerable cause of energy consumption
and air pollution [97]. Furthermore, people waste countless hours in the urban traffic
environment.

Addressing the aforementioned issues of safety, efficiency and pollution remains a
primordial concern to guarantee a better life quality. Therefore, the development of
intelligent vehicles is a viable solution to the mentioned problems in order to ensure
security by avoiding accidents and providing an economic, comfortable and intelligent
driving.

Recently, AVs receive worldwide attention thanks to the considerable advancement
and progress that have been achieved in this field of research. These improvements are
made on account of the prompt advances constructed in information, electronics and
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communications technologies, and by employing essentially Al In fact, an AV is a car
that moves safely and takes decisions by sensing its surroundings with little or no human
intervention in real traffic conditions.

Some basic characterizations for automation levels are currently set according to
the Society of Automotive Engineers (SAE) [193] for better understanding of self-
driving cars. Different levels of automation are defined and they cover degrees from no
automation to complete control. Otherwise, the higher level is the more the vehicle’s
monitoring responsibilities.

ADAS Higher levels of driving systems
Level: 0 Level: 1 Level: 2 Level: 3 Level: 4 Level: 5
No . Partial High Full
SAE (J3016) autonomation Assisted autonomation autonomation autonomation _—
FEET-OFF HANDS-OFF EYES.OFF MIND.OFF M
-1 W 2T &
et o

Monitoring

X The driver regularly has to monitor the vehicle and the driving
tas|

environment

The human intervention is not required to monitor the vehicle
and the diving enviromment

The vehicle is responsible

The Driver is responsible

Figure 2.1: Levels of driving automation according to SAE J3016 [89]

According to the SAE international’s J3016, there exist 6 levels describing the state

of automation for a vehicle [89]. These levels are presented as below and described in
figure 2.1.

* Level O: It is labeled as no automation and the driver entirely controls the vehicle
continually.

* Level 1: It is known as ‘feet off’. The automated system and the driver all together
control the car. Automatic parking and the automatic breaking are given as ex-

amples. Besides, the driver must be always prepared to retake total control any
time.

* Level 2: It is entitled ‘hands off” and the automated system is responsible for
accelerating, breaking and steering the car. The driver monitors the driving and
must be ready to rapidly intervene if the system fails to respond correctly.

10
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* Level 3: Itis called ‘eyes off’. At this stage, the driver can ignore safe driving task,
like texting, working and even watching a movie. The car handles situations that
require an instantaneous response such as the emergency breaking. However, the
driver still must be willing to intervene in limited time fixed by the manufacturer.

e Level 4: It is known as ‘minds off’. At this level, the driver cedes the full control
to the vehicle and is not expected to control it at any time. For example, the driver
can safely sleep.

* Level 5: It is entitled ‘steering wheel optional’, and the human intervention is not
required (e.g. a robotic taxi).

:
Perception :

Localization

- Sensors bata__,  Perception

Environment Model
and vehicle Pose

Mission Planning
Behavioral Planning
Motion Planning

— Vav Planning

Target Actions

.~ Actuators . ©mmndi  control
: é

Hardware Software

Figure 2.2: Typical autonomous vehicle framework

A typical autonomous driving framework can be categorized into three main stages:
perception, planning and control. The mentioned stages and the car’s interactions with
the environment are depicted in Figure 2.2.

The perception process is responsible of accurately perceiving the vehicle’s surround-
ings through suitable sensors. Environmental perception aims to understand the envi-
ronment, by positioning the obstacles, detecting the road signs, and categorizing the
acquired data. Localization refers to the determination of the vehicle’s position com-
pared to the environment.

The planning process makes decisions in order to achieve autonomous driving goals,
such as avoiding obstacles.

11
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Finally, the control stage refers to the execution of the planned actions generated by the
planning process.

2.2.1 Advanced driver-assistance systems: ADAS

The supporting and assessment of the driver in critical conditions are provided by ADAS
applications. Literally, these applications present extra traffic information, an overview of
the driver’s behavior, and environment information to guarantee an efficient performance.

In fact, the advancement of driver assistance systems was set out at the end of the 70’s
through an Anti-lock Braking System (ABS) embedded into a serial production [192].
Afterwards, the improvement steps in this area can be distributed to three classes: net-
work sensors, proprioceptive and exteroceptive sensors. As regards to the proprioceptive
sensors, they are responsible for detecting danger situations and then responding through
analyzing the vehicle’s behavior. Concerning exteroceptive sensors, like the radar, ul-
trasonic, lidar and vision sensors, they are capable of responding on a prior stage and
predicting dangers [86]. The employment of these sensors ensures ADAS applications.
Some of these ADAS applications are detailed below and illustrated in figure 2.3.

* Blind spot detection: It observes the vehicle’s adjacent area. Thus, it warns the
driver of the existence of obstacles in the blind spot, via a visual sign in the side
view mirror or through an audible signal.

* Road cross traffic alert : It helps avoiding accidents when the driver reverses out
of parking. This functionality provides a visible signal and an audible warning if
an object is detected in the driving direction’s reverse.

* Traffic sign assist : It automatically recognizes traffic signs, even the signs of other
countries. Therefore, safer and relaxed driving is provided.

* Lane Departure Warning : It is in charge of scanning the edges of the road and
detecting when the car is deviating the lane of the road. Thus, the driver will be
warned via an hyptical signal as a steering wheel vibration or through a visual
warning.

* Emergency Brake Assist : It is an active braking support that automatically brakes
on critical situations, so, rear-end collisions will be refrained absolutely and pedes-
trians will be protected.

12
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» Adaptive Cruise Control : It it is able to control the distance from the car ahead.
Moreover, it alerts the driver or slows the vehicle’s speed if the respective distance
becomes inadequate (too small).

Rear Cross Traffic Alert Traffic Sign Assist Lane Departure Warning

Figure 2.3: ADAS

2.2.2 Sensing Modalities for intelligent transportation systems

Sensors collect information about road conditions, and vehicle’s surrounding can be
categorized into two classes: active and passive. Active sensors diffuse signals, and
based on the reflected signal it identifies targets, such as the radar and the lidar. Passive
sensors acquire data without diffusing, and cameras are the most widely used example.

* Radar

Nowadays, the radar is well exploited in many fields such as mapping, meteorology
and especially in the area of automation [120]. In fact, the principal goal of a radar
system is to detect the existence of one or more targets in the area of interest. A
radar simultaneously transmits and receives electromagnetic waves in frequency
bands between 3 MHz and 300 GHz, and it extracts information (range, position,
velocity) using the reflected EM waves from the targets [120]. It is robust against
fog, rain, bad weather and lightning conditions (day and night). Furthermore, the
automotive radar systems can be divided into three classes: short range radars that
are mostly employed for parking assist, medium range radars used for rear collision
avoidance, and long range radar utilized for adaptive cruise control [103].
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e Lidar

Light detection and ranging known as lidar, is considered as one of the dominant
technologies in the field of AVs. It is fixed on the roof of the car and it spins
regularly. Lidar is a laser scanner that provides a 360-degrees of visibility of the
vehicle’s environment and measures the range from 1m to 60m depending on the
sensor. Besides, it illuminates the target with a pulsed laser light and measures
the reflected pulses through a sensor [8]. The sensor outputs point cloud data
that include the position (X, y, z coordinates) of the objects and their intensity
information which indicates the object reflectively. There are three major lidar
types used in the autonomous driving field: 2D lidar, 3D lidar and solid state lidar.
This sensor is expensive and sensible to weather conditions such as fog and snow
owing to the diffraction of light within these circumstances.

e Camera

Cameras are considered as the eyes of the vehicle through outfitting the car with
several cameras at all angles. In fact, two versions of visible cameras are used in
this field which are mono and stereo vision [192]. Fora mono vision camera, it is
usually employed to understand the essential surroundings as detecting the speed
limit signs or lane marking. Concerning stereo vision cameras, they are analogous
to human eyes and provide two video sources. In fact, the utilization of such a
technology helps the vehicle to understand the traffic flow and obstacles’ positions.
In addition to mono and stereo vision, there exists a night vision system, which
adopts infrared cameras. Although cameras are sensible to lighting variations and
weather conditions, they are the only sensors capable of detecting color, texture
and contrast information [140].

e Ultrasonic

It is a low-cost sensor that sends sound waves in high frequency in order to
determinate the object’s distance. Actually, it is widely used in this field to detect
near obstacles; however, it is affected by noise and interference [135].

The aforementioned sensors are highlighted in figure 2.4 to highlight the benefits and
limits of each sensor, Table 2.1 summarized the mentioned sensors’ characteristics.
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Table 2.1: ADAS sensors’ characteristics
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Figure 2.4: Sensors employed for ITSs

2.2.3  Multi-modal environment perception challenges

The environment perception stage is the first and most primordial process for automated
driving. It provides the vehicle with decisive information on the driving environment
over time. Thus, the vehicle should determine its position in order to correctly interrupt

the data acquired from the perceptional sensors. This task is known as localization.

Afterwards, the vehicle senses its surroundings through the employed sensor. Robust
detection and classification of stationary and moving obstacles is essential to correctly
perceive the environment. Furthermore, the surrounding objects’ positions and velocities
are determined and tracked during this stage, and even future states can be predicted.

Thereby, the development of a reliable perception system remains a challenging task,
because the car must perceive its surroundings in real world situations that include
uncontrolled and complex scenarios such as urban environment. Figure 2.5 illustrates
a complex urban scenario using multi-modal sensors, and including multiple relevant
traffic participants.

Accordingly, the current challenges related to the environment perception are caused
by the complex outdoor environments that include different road agents, as well as
the presented requirement to develop efficient algorithms for real-time perception. In
addition, variable lighting and adverse weather conditions, uncontrolled backgrounds

16
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Figure 2.5: Complex urban environment for autonomous driving [47]

and the occlusion of multiple objects remain critical challenges for the perception process
for intelligent vehicles.

On account of the aforementioned challenges and as a small error can engender fatal
accidents, the environment perception system should be:

(i) accurate: It must to provide precise information about the driving environment.

(ii) robust: It should work accurately in adverse weather, under various situations and
circumstances, and even when the sensor degraded.

(iii) real-time: It should have a real-time response particularly when driving at a high
speed.

To achieve achieving these goals, the environment perception system takes advantage
of multi-modal sensors to completely perceive the vehicle surroundings. As already indi-
cated, the most utilized sensors in the automation field are: cameras and lidar and radar
sensors. In fact, every sensor has its typical advantages and disadvantages, as mentioned
in section 2.2.2 so each of these sensors can be employed in different situations. Thus, a
comparative study of the most used sensors according to the autonomous requirements
is presented in figure 2.6. As depicted from the figure, it becomes obvious that all the
requirements for autonomous driving can not be ensured by an individual sensor type.
However, a combination of two sensors or more can achieve good results for the environ-
ment perception task. Hence, the fusion of various sensing modalities permits exploiting
their complementary properties.

17
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Figure 2.6: Comparison of perception environment sensors

2.3 OBSTACLE DETECTION

As mentioned in Chapter 1, in our work we focus particularly on one of the fundamental
environment perception dilemmas which is object detection. Object detection points out
the identification of the objects of interest locations and determines their sizes. This
section discusses the state of the art of object detection and especially the work related
to object detection for ADAS applications.

2.3.1 Recent developments in object detection

The state of the art of object detection can be practically divided to pre and post-
deep learning appearance. In fact, preceding the progress of deep learning approaches,
the literature were principally based on hand crafted features such as Histogram of
Oriented Gradients (HOG) or the scale-invariant feature transform (SIFT), which are
employed with traditional classification methods like the Support Vector Machine (SVM),
Adaboost, etc. Some major pre-deep learning contributions made in the object detection
field are listed in the following.

» Cascade of weak classifiers : It is one of the basic approaches that was proposed
by Viola and Jones [167]. Haar features are extracted, and Adaboost with cascade
classifiers are used for object detection. The proposed technique is based mainly
on the sliding-window principle.

18
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* HOG : In [39], HOG features were introduced by Dalal and Triggs, and they are
based on the edge directions within the image. SVM classifier was utilized for
object classification.

* Deformable Parts Model (DPM) : Itis a graphical model proposed by Felzenszwalb
et al. Actually, the DPM introduced to face objects’ deformation in the image [46].
DPM is based on the fact that each object is composed of its parts.

* Selective Search (SS) : This method was put forward by Ujjlings et al. [165].
The SS technique generates independent object proposals. In fact, the input image
is segmented into different scales, which generates several ROIs. A similarity
comparison based on the color, size, texture, etc. is made to merge the redundant
regions and set will be suggested afterwards.

Nowadays, with the significant advancement of employing deep learning, a relevant
impact on the filed of object detection is made. It is considered a powerful tool as it can
learn hierarchical features for large amounts of data. Correspondingly, several methods
have been proposed to tackle the object detection dilemma. The state of the art related
to deep object detection can be divided in two categories: the two-stage or one-stage
pipelines. The two-stage network is also known as the region-based technique and the
one-stage is called the single shot object detector.

* Region-based object detection network:

In the primary stage, several ROIs are extracted and are considered as object
candidates. Afterwards, these region candidates are confirmed and classified. Then,
classification scores and locations are refined. The pioneering work that utilized
deep learning for object detection was OverFeat [152] and R-CNNs (Region-
based ConvNetworks)[57]. Indeed, ROIs are firstly generated using the sliding
window technique for OverFeat and selective search for R-CNNs. Subsequently,
the suggested ROIs are processed via CNNs to extract relevant features for the
classification and the regression of the bounding boxes. For the SPPnet (Spatial
Pyramid Pooling networks) [63] and Fast-RCNN [56] networks, the features are
directly generated from feature maps by employing a larger CNNs on the entire
image (e.g. Resnet [64], VGG [155], GoogleLeNet [159]). In Faster R-CNNs
[134], the object detection pipeline is unified and a region proposal network is
introduced for generating region proposals. Following this line, in [37] the R-FCN
(Region-based Fully Convolutional Networks) was put forward, which was a fully-
convolutional network. In fact, the fully-connected layers of the RPN are replaced

19



2.3 OBSTACLE DETECTION

with convolutional layers. Run time and accuracy are increased for object detection
performances.

Single shot object detection network:

This type of model proposes to straightly match the feature maps with the bounding
boxes and classification scores via a unified CNN network. For example, YOLO
(You Only Look Once) [132] models the object detection task as a regression
dilemma where the object proposal generation process is eliminated. The bounding
boxes are directly regressed from the CNN. The SSD (Single Shot Detection)
[93] treats objects with different sizes via regressing numerous feature maps of
various resolutions. Small convolutional filters are used for predicting multi-scale
bounding boxes.

Generally, the region-based object detectors like the Faster-RCNN tend to reach higher
detection accuracy owing to the generation of various region proposals and the refinement
model. This comes with a higher execution time, high power computation and a more
complicated training process. In contrast, the one-stage networks are faster and can be
optimized easier, which makes them well-suited for real-time applications. Yet, in terms
of accuracy, they are under-performed in comparison to the two-stage object detectors
[70]. Figure 2.7 shows the performance evolution for basic CNN-based architectures
from 2012 to 2019 evaluated on the ImageNet 2012 dataset. This comparison is based

on the achieved accuracy and the number of parameters illustrated with a varied circle.

The mixed colors in the figure indicate that two architecture kinds are combined [69].
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Figure 2.7: Performance evaluation for basic CNN-based architecture from 2012 to 2019 carried

on ImageNet 2012 dataset [69]
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2.3.2 Object detection in ADAS

Dynamic environments contain various static and moving obstacles that interact with
each other. Therefore, distinguishing these objects is an essential task of the perception
environment stage. In fact, the development of object detection systems for autonomous
driving is specifically challenging as it has high requirements in terms of real-time,
accuracy, and robustness performances. The results obtained from object detection are
commonly transferred to the other units such as decision making. Thus, a reliable object
detection system is a prerequisite for safe driving under complex and uncontrolled driving
environments [173].

Object detection in ADAS faces various challenges that are related to the complex

driving environment, which includes a cluttered background and various road-agents.

These agents have different types (traffic signs, pedestrians, cars, motorcyclists, etc) with
various sizes. Moreover, many obstacles can be occluded, so occlusion adds additional
challenges to the object detection task. Likewise, bad lighting and weather conditions
still affect the detection performances significantly.

Furthermore, when developing object detection systems, it is essential to consider
some critical aspects. For the input data, the questions that remain are: Are there any
available multi-modal or uni modal datasets? Are the data of high quality and labeled?.
Furthermore, several important questions should be answered: Which modalities should
be used or combined? How are required data represented and how can we process them
correctly?. Accordingly, which fusion methods can be applied and at which stage can
we have an accurate and reliable object detection system? Correspondingly, various
challenges related to object detection when developing ADAS should be considered .

2.3.3  Uni-modal based systems for road obstacle detection

Complex driving situations often present various obstacles. Some works has focused on
2D detection, while some others deal with 3D object detection, which includes more
challenges thanks to the development of complex datasets. To address this challenge,
the use of a single modality or a combination of various ones has been adopted in the
literature. In this section, we summarize various existing techniques for uni-modal based
systems for obstacle detection.
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2.3.3.1 Vision sensor-based object detection

One of the essential sensors used for observing the vehicle’s surroundings is the camera,
so, computer-vision based approaches have been widely employed for obstacle detection.
Some research has focused on using only one camera while others have employed
several cameras to obtain multi views of the vehicle surroundings and accurately detect
the obstacles.

Existing vision-based methods can be distinguished into three categories: stereo-
vision, classical-based and deep learning based methods. The stereo-based methods use
two cameras that generate a depth map due to their capacity of 3D scene reconsecration.
Accordingly, the objects are segmented within the depth map relative to their spatial
locations. These approaches are able to detect various obstacles with different shapes
and various motion statuses. Moreover, they can accurately determine the distance and
the 3D geometric size [184].

Classic visual obstacle detection approaches employ hand-crafted descriptors such
as the HOG [39], Aggregated Channel Features (ACF) [41] or the Integral Channel
Features (ICF) [42]. A pedestrian detector was proposed in [130], and features were
extracted from numerous image scales using the ACF. The approach consisted in training
several models using multiple resolution. Finally, the bounding boxes generated by each
model were concatenated. In fact, an improvement of 6 % was achieved in terms of
average precision over the employment of single resolution. A vehicle proposal location
framework was introduced in [189]. The suggested algorithm was a graph-based method
that generates accurate region vehicle proposals compared with traditional approaches.
The experiments were carried out on the PASCAL VOC2007 and the Kitti dataset. In [94],
obstacle regions were segmented via a specific threshold to obtain binary images. Yet, this
technique depended on the defined threshold, so some obstacles were not well segmented
and noise also affected the obstacle detection process. The V-disparity algorithm has
been used in various studies for obstacle detection [25] [54] [109]. Nevertheless, this
approach is sensitive to large objects that will influence the detection of small objects. The
latest classical object detector is the DPM which has achieved significant improvements
in the object detection area. Yet, its detection accuracy is still limited for driving object
detection and its computation complexity remains very high. In [185], HOG features
were incorporated with disparity maps via a modified DPM. The disparity maps were
determined from the stereo images using the semi-global matching method. In [170],
a traffic sign detection system was put forward, which included three processes: image
preprocessing, detection and recognition. An RGB color segmentation was adopted and
followed by a shape matching technique. Then, SVM was employed as a classifier. A
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vehicle detection system that relied on a stereo vision classifier was proposed in [112].

The fusion Haar, the Local Binary Patterns (LBP) and the HOG features provided
good detection results. In [62], an ROI obstacle was defined based on the distinctive
characteristics of the optical flow of the background over the optical flow of the obstacle
region.

Despite the fact that promising results have been found using the classical techniques for
object detection, these methods tend to fail in numerous complex driving environments
that comprise different objects’ sizes and types, and critical challenges.

While classical object detectors get stuck in the bottleneck, there are a wide deep
learning models that boost research for visual object detection. In [178], a novel RPN
was suggested which exploited subcategory information to lead the region proposal
process. The input of the RPN was a pyramid image where it was processed via various
convolution and pooling layers to generate for every scale one feature map. Afterwards,
a convolutional layer was added for the subcategory object detection, where every filter
would fit with a specific subcategory. Correspondingly, the ROI generation layer would
use a thresholding technique on the heat maps to provide the object candidates. Cai et
al. [22] proposed a multi-scale CNN (MS-CNN) in order to handle the wide variation
of the objects’ size. The MS-CNN performed the object detection over various scales
of feature layers, that lead to an improved detection rates with a speed of 15 frames
per second. The authors in [183] employed scale dependent pooling to exploit suitable
convolutional features related to the sacle of the object candidate in order to improve the
detection accuracy. Furthermore, cascaded rejection classifiers utilized the convolutional
features and excluded the negative object candidates using the cascaded manner to speed
up the detection. The combination of the two contributions achieved better detection
accuracy on Kitti, PASCAL and Inner-city datasets. A Recurrent Rolling Convolution
(RRC) network was proposed in [133], inspired by the SSD architecture. The pedestrian
and cyclist detection accuracy achieved higher performances than the state of the art on
the Kitti dataset. Nevertheless, the RRC was a complex model with a high computation
time. In [173], visual object detection was guaranteed using three enhancements for the
CNN. They include a deconvolution and a fusion of the CNN feature maps to obtain
deeper features. Moreover, a soft non maximal suppression was adopted to address the
occlusion challenge. The Kitti dataset was exploited in this work. Zhang et al. proposed
in [190] a cascaded R-CNN to extract pyramids that represent the weighted multi-scale
features using the dot product and the softmax to enhance the traffic sign accuracy
detection. The authors in [131] used the mask R-CNN to detect the object and the optical
flow method was utilized to analyze the detected object movements.
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2.3.3.2 Lidar sensor-based object detection

Compared to vision based detection, reliable depth information is provided by a lidar
point cloud. The lidar point cloud is a set of points represented in space and corresponds
to a 3D object or shape. Moreover, 3D voxels can be generated via grouping the neighbor
points onto sets, so the computational cost is reduced. These data can be exploited to
accurately detect 3D objects and distinguish their shapes. For this reason, lidar-based
object detection has a deceive role for the visual perception system of ADAS to tackle
the camera-related limitations.

The object detection using lidar point clouds faces some challenges such as the
sparsity of the lidar points, the high variability of the point density, the occlusion, the
corresponding pose variation and the non-uniform sampling related to the 3D space [78].

The existing works on lidar-aided object detection methods can be distinguished into
three categories [174]:

(1) Projection-based methods: Several studies have focused on the projection of the
lidar points onto the bird’s view images. Then, 3D bounding boxes are regressed
according to the extracted features from these images [9] [176]

(i1) Point-voxel methods: Lidar data are represented as 3D voxels, and 3D CNNs are
applied for the prediction of 3D bounding boxes [98] [181]

(i11) Pointnets-based methods: Lidar points are processed directly through neural mod-
els without a pre-processing step [87] [158].

In the following, we briefly review some existing work that has focused on object
detection from the point cloud. Classical methods using lidar data for object detection
have used clustering algorithms in order to segment the point clouds and assign the
obtained groups to multiple classes [166]. The Vote3Deep modal was introduced by
Engelcke et al. [44] based on sparse convolutional layers. L1 regularisation was adopted
in this work for adequate processing of the 3D lidar data. Other work has exploited some
handcrafted features associated to the spatial relations between the segmented points
as fast-point-feature histogram [160] and the pin images [50] were extracted to identify
the categories of clusters. PointNet [126] and PointNet++ [127] were introduced for
processing the point sets and achieved good results in indoor environments. Nonetheless,
with the expanding amount of point cloud data involved in developing 3D object detectors,
computational power and huge memory requirements increased. In [107], the point
cloud was represented under five views: the distance, the size, the reflection, the range
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and the height. These views were the CNN inputs. The projection of the 3D data onto
2D views generated the loss of important information that was critical for the detection
task, particularly in congested scenes. An efficient deep-learning-based network, entitled
VoxelNet, was put forward in [191]. Features were directly extracted from sparse points
within the 3D voxel grid, so, remarkable results were achieved on the Kitti dataset.
However, the detection accuracy rate decreased slightly as the distance between the
voxels in the grid and was smaller than the distance of 3D lidar data. In addition, various
voxel-based methods have been proposed such as SECOND [181] and PointPillar [88].

Although lidar-based approaches can achieve remarkable object detection perfor-
mances, these methods require high resolution and a precise and available lidar point
cloud. Furthermore, the lidar has typically blind areas when detecting objects closer to
the vehicle.

2.3.3.3 Radar sensor-based object detection

Radar sensors provide rich information about the vehicle’s surroundings on account of
the received signals and the characteristics extracted from these signals such as: the
amplitude, the range, the velocity, the Doppler spectrum, etc. The acquired radar data
depend on the sensor type and its characteristics. In fact, it can be depicted by 2D feature
maps. Next, it can be processed via a CNN or a point cloud, or it can be represented as
1 dimensional (1D) signals that can be treated, afterwards, to detect the obstacles within
these signals.

Various object detection methods firstly cluster the radar targets according to their
characteristics (e.g. range, velocity, azimuth) to a group of object proposals. Next, these
clusters are classified. In [124], DBSCAN [45] was used to cluster the radar targets.
Subsequently, various cluster-wise features were extracted as the variance of the velocity.
The performance of numerous classifiers was compared for pedestrian detection as
the SVM and the Random Forest (RF). The authors in [150] also used DBSCAN to
cluster different targets. Then the LSTM and the RF were compared for the multi-class
(pedestrian, car, truck, etc.) detection task.

Wile clustering-based approaches are widely employed, it is often observed that
objects can be wrongly merged or can be split apart. The performance depends essentially
on the initial clustering step that relies on the definition of the suitable parameters that
must be utilized for all classes (as the radius of the cluster using DBSCAN). Furthermore,
small objects may be ignored using such methods.
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To tackle these challenges, some researchers have suggested to classify each target
separately rather than in clusters. In [149], inspired by the results achieved using then
lidar point cloud, the authors proposed to process radar data via PointNet++ [127] to
detect dynamic objects. Yet, a single radar frame datum is too sparse.

On the other hand, others have chosen to extract features from the acquired radar data
for classification. The Radar Cross-Section (RCS) values were obtained using different
frequencies, and the angles of simulated and measured obstacles have constituted the
feature vectors. Consequently, SVM was used for the classification of indoor targets
[19]. The received amplitude, the Doppler spectrum and the range characteristics were
extracted from the radar received signals. An SVM was employed to classify pedestrians
and cars [65]. A similar approach was suggested in [66].

Despite the fact that deep learning techniques have achieved remarkable advancement
in various fields of research, only few studies have employed radar data with deep
learning methods. In fact, to apply such networks, radar data require a pre-prossecing
step where the radar reflections are represented as an image-like data [149]. For static
object detection, occupancy grids were used as inputs for CNNs in [95] [96]. Kim
et al. [83] opted for utilizing convolutional Recurrent Neural Networks (RNNs) for
moving object classification via range-velocity maps. The range-velocity images are
obtained by transforming the time-series radar data by adopting the 2D discrete fourier
transform. The obtained results show that the LSTM-based network is able to learn the
dynamics of the lateral movements related to the vulnerable road users in the time-series
radar images. In [3], the spectrogram extracted from the time-frequency signals was
represented as 2D images. These images fed the stacked auto-encoders for extracting
high-level radar features. The authors in [84] transformed the acquired radar data to

range-angle representation. Following this, YOIO was trained on the transformed data.

The system accuracy reached 90% on a self-recorded dataset.

Table 2.2 summarizes the shortcomings of the aforementioned methods of object
detection according to their different characteristics.

Generally, it is challenging to utilize only data acquired from a single sensor in a
complex environment, specially for critical applications. The reasons can be caused
by the sensor’s shortages, the sensed environment, or both. Perceptional sensors suffer

from various limitations and inadequacies, which can degrade the detection performance.

Apart from the imperfections of sensors, the challenging environment conditions have
a huge impact on their outputs as weather circumstances (eg. rain, fog) or illumination
conditions (e.g. nighttime, low light). Besides, each sensor is suitable for a specific use
case, scenario and application. For instance, the radar provides certain information about
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Detection mode

Detection method

Detection characteristics

Computer-vision | Binary threshold | Cannot completely segment obstacles
UV-disparity Sensitive to large obstacles and
smal obsacles can be ignored
CNN Large amount of data required
Time-consuming
Optical flow Complex implementation and time-consuming

Multi-camera

Suffer from fisheye distortion

Camera calbiration required

Lidar

Sparse data

Radar

Sparse data

Table 2.2: Characteristics of different object detection methods

the obstacle’s distance, but its sparse data require a constructive processing step, other-
wise objects cannot be detected. Concerning the vision-based system, it can accurately
detect objects as pedestrians, but it is time-consuming. Additionally, using lidar data can
guarantee impressive performance, but this sensor is still easily affected by rain, fog and
dust.

Analyzing the advantages and limitations of employing each sensor separately, we
observe that the sensors mentioned above are complementary for the object detection
task. In other words, each sensor compensates the limits of the other sensor. Therefore,
based on these reasons, the need for employing multiple sensors and merging the acquired
data remain essential to enhance the efficiency of environment perception tasks.

2.3.4  Multi-modal based systems for road obstacle detection

Since incomplete and unreliable information can result in fatal driving situations due to
the challenging driving environment, combining data collected from disparate sensors
remains a good solution to upgrade the system’s overall detection performance.

Even though merging information obtained from numerous sensing modalities is a chal-
lenging task, thanks to advanced sensor technologies and the progress in data processing
algorithms, with the improvements in hardware, the fusion is becoming realizable.
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In this section, an overview of the adopted fusion strategies in the autonomous driving
field is presented and some multi-modal perception systems for the obstacle detection
task are reviewed.

2.3.4.1 Data fusion methods for automotive applications

The combination of data acquired from various modalities is of great interest. In this
regard, most existing work fuses RGB images with lidar point clouds. In addition, some
further work couples RGB images with thermal ones. However, we highlight that there
is a lack of research on combining radar data with images.

In fact, for object detection, there exist two predominant categories when fusing
various modalities: hand-crafted feature methods and deep-neural-network approaches.
Furthermore, the fusion of sensing modalities can be achieved at three possible stages:
early, intermediate or late. These levels are detailed in figure 2.8. For simplicity, the
sensing modalities are restricted to two.

e Low level

The low-level fusion is also known as an early or signal level. During this level, the
raw data acquired from multiple sensors are directly combined in order to obtain
merged data that can be used for successive tasks. For instance, the lidar depth
map is combined with the color camera data to define an RGB-D format that is
processed afterwards.

This level has a low memory budget and low computation requirements. However,
it is sensitive to data misalignment among the employed sensors, which can be
caused by different sampling rates or calibration errors.

e Intermediate level

The intermediate level or the medium-level fusion intends to extract features from
several data collected via multiple sensors. These features are, then, combined into
a feature vector that serves as the input for the subsequent process. An example is
the extraction of features from RGB images as HOG features and from the depth
map independently. These features are concatenated to a single feature vector.
Although this fusion type enables the system to learn different feature represen-
tations at several depths, it is not straightforward to identify an optimal way to
couple them for a specific architecture.
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e Late level

The late or high-level fusion is as known as decision level. The obtained decisions
that process each datum from different sources separately are combined to define
the final decision. For instance, combining the detected bounding boxes obtained
from the object detection algorithm processed on the RGB and depth map sepa-
rately determines the final detections using the voting method, for example.

The late fusion level is highly flexible; e.g. when an additional sensing modality is
introduced, it does not affect the overall architecture. Nevertheless, it suffers from
high memory and computation cost requirements.

In addition, there exists multi-level fusion (known as the hybrid-level). This level
focuses on the integration of various data at different levels of abstraction.

Moreover, based on the literature, five fusion operations are mainly used to fuse
multiple modalities based on a deep architecture [48]: 1) Addition, 2) Average mean,
3) Concatenation, 4) Ensemble: It is used to combine the ROIs for object detection, 5)
Mixture of Experts: This operation tends to modal explicitly the weights of the feature
maps.

It should be pointed out that there is no evidence that confirms that one fusion level
is better than the others. The performances are extremely dependent on the data, the
employed modalities and the network.

In the following, some multi-modal perception systems that exploit fusion are reviewed.
A summary of these approaches is presented in Table 2.3.

2.3.4.2 Fusion using camera and lidar data

Multiple studies have proved that fusing images with lidar data improves the accuracy of
the object detection process, particularly for far ranges and small obstacles [4]. There are
three techniques to combine lidar point clouds with camera images. Firstly, the results
obtained from training images and lidar points separately are merged. Secondly, the
targets are detected using camera images. Afterwards, the confirmation of the results is
provided using the lidar point clouds. Finally, the third method consists in defining ROIs
utilizing lidar data, and the camera is used to detect the objects.

Conzalez et al. [58] used transformed depth maps and RGB images as inputs to detect
pedestrians. In this work, the objects’ poses in multi view were taken into account, and
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Figure 2.8: Data fusion levels: (a) early fusion, (b) intermediate fusion, and (c) late fusion

intermediate fusion and late level fusion were used. For the intermediate stage, they fused
features extracted from HOG and LBP descriptors, with the SVM classifier. With regard
to high-level fusion, they coupled decisions obtained from the training of a detector on
each modality. In this case, the feature level fusion guaranteed a better performance.

In [156], a point fusion method was proposed where lidar points were mapped onto the

image plane and features were extracted from the image using a pre-trained 2D detector.

Afterwards, features were concatenated via a VoxelNet architecture. The authors in [11]
suggested an architecture based on two single-stage detectors. The information provided
by lidar data (height, distance, intensity) was transformed into images. These latter with
RGB images, were the inputs. These data were processed by VGG16 [155] to provide
features. Afterwards, an SSD [93] network was adapted to generate the bounding boxes
of 2D cars in foggy weather based on a deep feature exchange that relied principally
on feature concatenation. In the work of Xu et al. [179], the raw data acquired from
lidar were proceeded by a PointNet architecture, and images features were extracted via
the CNN. The obtained results were then pooled in order to locate the coordinates of
the 3D bounding boxes. Qi et al. [125] adapted a similar approach in their work. In the
work of [115], object proposals were generated using a segmentation method applied
on the data of lidar point clouds and RGB images. After that, the candidates generated

from lidar data and images trained two separate CNNs in order to classify the proposals.

The output decisions were combined using a basic belief assignment to associate the
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bounding boxes. Then a CNN model was implemented to determine the final decision
along with the SVM.

2.3.4.3  Fusion using camera and thermal camera data

Even though visual cameras are affected by weather and lighting conditions, thermal
cameras are robust to nighttime and daytime circumstances because they detect the ob-
ject’s heat reflected by the infrared radiation. For this reason, the combination of the
provided data can ensure detailed scene understanding as they are correlated in terms of
illumination conditions.

Hwang et al. [72] introduced an extension of the ACF dedicated for pedestrian detection.
The extended modal consisted of a multispectral ACF obtained from the augmentation
of the thermal intensity and the employment of HOG features as additional ones. In [80],
visible and thermal images were fused according to two approaches in the intention to
detect people. The first consisted in encoding the two types of images using indepen-
dent encoders, and the encoded features are merged and then decoded back in order to
generate a single fused image that would be the input of a Residential Network (ResNet)
architecture. This technique was called DenseFuse. The second proposed method was
an intermediate level fusion technique. Indeed, ResNet-152 was employed separately for
infrared and visual images. Thereafter, the extracted features were concatenated into a
single array that would serve as the input of the fully connected layer.

Early fusion and late fusion based on the CNN architecture to couple infrared and visible
images were investigated in [169]. The early fusion method consisted in combining the
pixels captured from the two modalities, in contrast to late fusion where two sub-networks
would provide a feature representation for both modalities. These representations were
fused on a supplementary fully connected layer. Besides, the proposals were generated us-
ing the ACF+THOG detector. According to the obtained results, a pre-trained late fusion
method evaluated on KAIST multispectral dataset guaranteed better performances. In
[90], an illumination-aware architecture was proposed based on the Faster R-CNN [134].
Infrared and visible images were respectively the inputs of two separate sub-networks.
Meanwhile, an illumination aware network was developed to estimate an illumination
value from color images. Thereafter, an illumination weight layer is integrated in order
to determine the fusion weights for both modalities. Consequently, the final decision was
achieved by weighting the final results obtained from the two sub-networks due to the
estimated fusion weights.
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2.3.4.4 Fusion using radar and camera data

For obstacle detection, the radar and the camera are two complementary sensors, but
only a few studies have addressed this challenge. Similar to the other kinds of sensing
combinations, the three types of fusion can be applied to couple these modalities.

In [172], radar tracks generated the ROIs in the images. Afterwards, for the vision module,
a symmetry algorithm and a contour detection technique were applied to the ROIs to
identify vehicles. The goal of the work presented in [17] was to detect pedestrians. The
radar sensor provided a list of tracks and the ACF object detector was adopted to generate
a list of identified pedestrians in the images. Subsequently, the fusion of the obtained
descions was ensured using the Dempster Shafter method. Wang et al. [171] proposed a
decision approach to fuse radar data and images. The YOLO [132] network is employed
in this work to detect vehicles from visible images. The radar sensor detects the centroid
of the obstacles. Afterwards, these detections were projected on the image plane. Finally,
the results obtained from the two modalities are combined. A real-time Radar Region
Proposals network (RPNP) was developed in [110]. The suggested network consisted
in generating ROIs based only on radar detection. In fact, the tracks are mapped into
images so that anchor boxes are proposed, which are inspired by fast R-CNN architecture.
Then, these boxes are scaled according to the distance of the objects to have accurate
detection. Radar data are transformed into images in [23] in order to be combined with
RGB images. Actually, these data will be proceeded via the ResNet network separately.
Accordingly, features are concatenated after the second block of ResNet.

To fuse different modalities for understanding the vehicle surroundings, many ap-
proaches have employed deep neural network architectures, while others are based on
hand crafted features. From the aforementioned reviewed studies, we observe that the
fusion performance depends mainly on the sensing modalities, the quality of data and the
selected architecture. For fusion operations, feature concatenation is a widely exploited
method, specifically in early and intermediate levels. Likewise, the addition and mixture
of experts are mainly employed for intermediate and high stages.
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Ref  Object class Sensing modality processing Hand crafted features Network pipeline  Fusion level Used dataset
Lidar and camera fusion
[58] Pedestrian -Depth maps generated from lidar sensor -HOG . Intermediate Kitti
-RGB images -LBP Late
-Lidar voxel
. . Early L
[156] 3D car -RGB images processed via - . Kitti
) Intermediate
2D image detector
-Depth, intensity and height information Early and
2D cars K K R i i
[11] X acquired from lidar and processed via VGG16 - intermediate Self-recorded dataset
(foggy weather) . .
-RGB images processed via VGG16 layers
Car Lidar raw d d by PointN Kitti
-Lidar raw data processe ointNet itti
[179] Pedestrian ) P Y . - CNN Early
i -RGB image features extracted via CNN SUN-RGBD
Cyclist
Infrared and visible camera fusion
[80]  Persons -RGB images and thermal images encoded ResNet-152 Early KAIST-Multispectral
for early fusion Intermediate
[169] Pedestrian -RGB images and thermal images . R-CNN Early KAIST Pedestrian dataset
processed via CaffeNet Late
RGB i d thermal i Barly
[60]  Pedestrian ) images and thermal Images - Faster R-CNN Intermediate KAIST Pedestrian dataset
processed via VGG16
Late
Radar and camera fusion
[172] Vehicles “Tracks from radar sensor -Symmetry detection algoritm Intermediate Real-workd recorded dataset
-RGB images -Active contour detection
[17]  Pedestrian -Radar generates list of tracks ACF object detector - Late Real-workd recorded dataset
-RGB images
[171] Vehicles -Detections from radar . YOI0 Late Self-recorded dataset under
-RGB images rainny weather
Car, Person,
[110] Motorcycle, -Tracks from rear radars . Fast R-CNN Early Two substes from
Truck,Bicycle ~ -RGB images from the rear camera nuScenes dataset
and Bus
-Radar range proceeded by ResNet .
[23] 2D Vehicle ) sep v - One stage detector  Intermediate Self recorded dataset
-RGB images proceeded by ResNet.
Car,Bus,
[14] Motorcyle, -Radar data transformed to image plane VGG low nuScences
Truck, Trailer, -RGB images TMU Self recorded dataset

Bicyle,Human

Table 2.3: Summary of fusion approaches for obstacle detection
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2.4 PERFORMANCE EVALUATION METRICS FOR INTELLIGENT TRANSPORTA-
TION SYSTEMS

Commonly, object detector outcomes include a list of detected bounding boxes, confi-
dence levels and affected classes. In fact, the bounding box is mostly presented by its
bottom-right and top-left coordinates (X;;itial»YinitialsXend»Yend)> With an exception for the
YOIO algorithm.

The most common performance metrics used to evaluate the object detector are the
Average Precision (AP) and and its derivatives as the mean Average Precision (mAP)
over all the objects’ classes. Previously, some concepts should be reviewed which are
shared among these metrics. The basic ones are presented below :

* True Positive (TP): It is the accurate detection of a ground truth bounding box.

* False Positive (FP): It is the incorrect detection related to a misplaced bounding
box of an existing object or a nonexistant object.

* False Negative (FN): It is a miss-detected ground-truth bounding box.

It is important to point that a True Negative (TN) result is not considered in the scope
of object detection, since there are limitless bounding boxes that should not be detected
among any image.

The aforementioned definitions require distinguishing correct detection from incorrect
detection. For this reason, the Intersection Over Union (IOU) measure is used. This metric
is based on the Jaccard index, which represents a measurement of similarity between
two sets of data [73]. In the object detection context, the IOU is employed to measure
the overlapping area among the ground-truth bounding box (Bg; presented by the orange
color) and the predicted bounding box (Bp presented by the green color) divided by
the area of the union between them [117]. The IOU is presented by Equation 2.1 and
illustrated in figure 2.9.

B B
10U = J(Bp, Bgr) = % @.1)

Subsequently, the obtained IOU value is compared to a defined threshold (thr) to
decide if the detection is accurate or inaccurate. If the IOU > thr , then the detection is
correct. Otherwise, if the IOU < thr, then the detection is incorrect.



2.4 PERFORMANCE EVALUATION METRICS FOR INTELLIGENT TRANSPORTATION SYSTEMS

Samples of I0OU scores

10U =0.9 10U =0.56 I0U=0.12 10U=0

Area of overlap | ‘
10U = =

Area of Union ‘

Figure 2.9: Intersection-over-union (IOU) metric samples of single object.

After determining the TP, FP and FN through the IOU calculation, the assessment of
the detectors rely mostly on the Precision (P), the Recall (R) and the F1-score metrics.
The P presents the ability of the detector to identify just the relevant objects. This
metric introduces the percentage of the correct positive predictions. Concerning the R, it
presents the ability of the detector to identify all the relevant samples, i.e. all the ground-
truth bounding boxes. It exhibits the percentage of the accurate positive predictions
within all the considered ground truths. The F1-score is the metric that balances P and
R. The metrics mentioned above are presented respectively by Equation 2.2, Equation
2.3 and Equation 2.4.

TP TP
P = = - (2.2)
TP+ FP  All detection
TP TP
R = = 2.3
TP+ FP  All ground truths 2.3)
P.R
F1 — score =2 x 2.4
P+R

Besides, an object detector achieves a good performance when it identifies all the
ground-truth objects, so FN is equal to O (high recall) while finding only relevant
obstacles so FP is equal O (high precision). Hence, the detector is considered good when
its precision rate is high while its recall rate increases, which means if the confidence
threshold is changed, the P and R will remain high. Thus, the AP metric is calculated via
Equation 2.5. It uses the all-point interpolation concept where the precision is interpolate
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at each level and it takes the maximum precision value whose recall rate is greater than
Ry.

AP=Y (Ry—R,_)P, (2.5)

n

The mAP is the metric that measures the accuracy of the object detector over all the
classes considered in a specific dataset. The mAP is the average of th AP over all classes
and it is presented by Equation 2.6.

1 N
mAP = <Y AP, 2.6)

1

where AP; is the AP of the ith class and N is the total number of the classes that are
being evaluated.

2.5 CONCLUSION

In this chapter, we have presented the state-of-the-art of object detection dilemma for
environment perception for intelligent and autonomous systems. By analysing the ad-
vantages and the disadvantages of using each sensor separately, we have concluded that
these sensors are complementary to perceive the vehicle’s surroundings. Following, we
reviewed the fusion strategies and object detectors based on combing different sensors
at various levels.

In the next chapter, we will review the datasets used in this field of research and we will
present our multimodal developed dataset for advanced environment perception. After
that, a fusion framework will be presented.
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3.1 INTRODUCTION

3.1 INTRODUCTION

As we mentioned in the previous chapter, almost of the multi-modal environment per-
ception approaches are based on supervised learning. Accordingly, multi-modal datasets
including labeled ground-truth is needed in order to train such methods, so, to develop
road object detectors.

This chapter summarizes numerous published real-world datasets regarding employed
sensors, the recording conditions, their size and labels. Consequently, we detail our
proposed multi-modal dataset and a new fusion framework that combines data acquired
from the different sensors used in our dataset to achieve better performances for obstacle
detection task.

Section 3.2 refers to an exhaustive overview of the available public environment
perception databases. The proposed dataset is introduced in section 3.3 which includes
the sensors setup, the scenarios, the challenges and the dataset details. The section 3.4
exhibits the proposed fusion framework and the obtained results.

3.2 EXISTING PUBLIC MULTIMODAL ENVIRONMENT PERCEPTION DATABASES

Public multimodal datasets are indispensable for autonomous driving’s advancement. In
the last decade, several datasets have been released for this purpose, Kitti [55] dataset and
Cityscapes [31] dataset are considered the first datasets that have addressed real-world
challenges. Until few years ago, datasets that contain only sparsely annotated data were
satisfactory to treat several problems. But nowadays, with the evolution of deep learning
techniques the exploitation of such datasets is insufficient [79].

In fact, the training of deep models requires datasets with a huge number of labeled data
though collecting such amount of data is not an obvious task. Hence, this requirement has
led to the development of several new sophisticated autonomous driving datasets [61]. In
this section, we review various existing public monomodal and multimodal environment
perception databases by detailing and observing the characteristics of each one. Table
3.2 exhibit an overview of various environment perception datasets.

* Kitti : It is a vision benchmark dataset that was released in 2012 and comprises
stereo camera, Velodyne lidar and inertial sensors [55]. Within the introduction
of this database, various vision tasks were launched as pedestrian detection, road
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detection, etc. It was recorded in six different emplacement with cluttered scenes
and it provides over 200k boxes that was manually labeled. Nevertheless, only
3D objects that exist in frontal view are annotated and it covers only daytime
conditions. Moreover, the preeminent limitation of Kitti database is the small
amount of data that is not suitable for deep learning algorithms.

CamVid : The University of Cambridge has introduced a new driving dataset
named CamVid. It was the first that contains videos with semantic segmentation
labels related to 32 classes. However, the size of this dataset is small; it contains a
limited number of sequences: only four scenes [18].

Cityscapes : It is a dataset that was published in 2016 [31]. It covers urban traffic
scenarios in 50 cities, in only spring and summer and it includes 30 categories.
Cityscapes consists of a pixel-level and instance-level segmentation labeling. In-
deed, it contains mainly images and few videos with 5000 images which have
fine-annotation over 20000 images along coarse annotations.

BBD100k: It was recorded in 2016 in four different regions in the US [188]. It is
considered as the largest driving video dataset due to its diversity in terms of data
and driving conditions. The database comprises 100k videos containing almost
1000 hours recorded under different weather conditions. Indeed, only one image is
selected from each video sequence for labelling likewise Cityscapes dataset. Ten
thousands images are labeled in pixel level and bounding box labels are provided
for 100k images.

Kaist Multi-Spectral: It is a multimodal database that was repeatedly collected
in urban, residential and campus environments [30]. Several sensors were fixed on
the vehicle, namely: stereo camera, thermal camera, GNSS, 3D lidar and inertial
sensors. Moreover, it covers a diverse time slots ( day, night, morning, sunset, etc.)
and the annotation is provided in 2D. Compared to the newest released datasets,
the size of the Kaist dataset is limited.

ApolloScape : Compared to Kitti and Cityscape databases, the ApolloScape
dataset [71] contains an extensive amount of data and has many properties that
will be detailed in the following. In fact, it includes stereo driving sequences that
reach over one hundred hours of recording under diverse day times and about
144k images. It covers also 2D and 3D pixel-level segmentation, instance segmen-
tation, lane marking and depth. Further, in the intention to label such a database,
the authors developed several tools customized mainly for the annotation process.
However, data acquired from lidar is used to provide only static depth maps.
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* H3D : It was introduced in 2019 , and it considers various complex and congested
scenes over 160 [119]. Three cameras, a lidar, a GPS and inertial sensors were
used to collect this dataset. The main challenge addressed in this dataset is 3D
multi-object detection and tracking. In fact, it consists of 1.1M 3D boxes annotated
data, which includes over 27 k frames. Plus, objects are labeled in 360° view. Eight
classes was taken into consideration when recording this dataset : car, pedestrian,
cyclist, truck, misc, animals, motorcyclist and bus. It is true that the dataset
comprises rich scenes and annotation with a particular size, nevertheless, the
data was registered under daytime conditions.

e BLVD: The dataset introduced in [180] and entitled BLVD does not focus on
static obstacle detection only, but especially on dynamic object detection. Indeed,
this dataset proposes a platform that involves 4D tracking (3D+temporal), 5D
interactive recognition events and 5D intention prediction. It includes 3 categories
: vehicle, pedestrian and rider, the data was recorded in daytime and nighttime
conditions. It provides 120k frames with a 5D semantic annotation and beyond
249 3D annotation.

* nuScene (nuTonomy scenes): It is the first dataset that involves the three preemi-
nent sensors exploited to ensure an autonomous driving which are a lidar, 5 radars
and 6 cameras [20]. This database consists of 1000 scenes where the duration of
each scene is 20s. The annotation provided is a 3D bounding boxes specified for
23 categories. The data were gathered under several lighting and weather condi-
tions : daytime, nighttime and rain . This new released dataset is rich in terms of
utilised sensors, size, acquisition conditions diversity, amount of data with 1.4M
frames and annotation numbers. Yet, the main issue of this dataset is the class
imbalance represented by the inequality number of examples of infrequent and
ordinary object classes.

* A2D2: The A2D2 (Audi Autonomous Driving Dataset) is recorded via six cameras
and five Lidar in order to provide a full 360° coverage. It includes 41,277 frames
along semantic segmentation images and point cloud labels. In addition, this
dataset is the only dataset that contains vehicle bus as the steering wheel angle,
the throttle, and the braking. The A2D2 data were recorded on cities, highways
and country roads in the south of Germany under sunny, cloudy and rainy weather
conditions.

Other than the autonomous driving databases mentioned previously, it exists additional
datasets that are released for the same purpose, such as the Oxford Robotcar [100],
Udacity [164] and DBNet Dataset [26].
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Dataset Autonomous Driving Task

Multi-Object detection  Object tracking Optical flow Lane detection Semantic segmentation SLAM 3D vision

CamVid [18] X X X
kitti [55] X X X X X X X
Cityscapes [31] X X

BDD100k [188] X X X X

Kaist Multispectral [30] x X X X
ApolloScape [71] X

H3D [119] X X

BLVD [180] X

nuScenes [20] X

Table 3.1: Categorization of some autonomous driving datasets by task

Furthermore, some multi-modal virtual datasets or virtual simulators have been devel-
oped in order to generate variable driving situations, specifically the dangerous scenarios
that can’t be or hard to be collected in real-world. For instance, Gaidon et al. [51] de-
velop a virtual Kitti database, in [137] and in [177] virtual dataset have been generated
based on game engines as GTA-V. Dosovitskiy et al. [43] build an open-source simu-
lator for simulating multiple sensors. Even though various virtual dataset are available
now, the question that remains is how accurate the simulator can represent real-world
circumstances.

As the databases are mainly released to enhance the scenes understanding and en-
vironment perception, we provide in Table 3.1 a categorization of the most important
autonomous driving datasets according to a particular tasks.

From table 3.1, we can notice that most of the reviewed datasets were dedicated to
multi-object detection as it is an inevitable process in the autonomous world. Likewise,
there are favorable number of datasets dedicated to object tracking, lane recognition
and semantic recognition, but in return, just a few ones can be used to optical flow
exploitation and SLAM (Simultaneous localization and mapping) process.

Following the exhibition of the most datsets, we provide above a comparative study
in terms of the recording conditions, the employed sensors, the dataset size, etc.

— Sensing Modalities : In terms of sensing modalities, all the examined
datasets contain RGB images acquired from one or more cameras or video in
HEVC (high efficiency video coding) standard or in recent coding [49]. Lidar
sensor also have been well exploited. For radar data, it is only presented in
nuScenes dataset [20] and the newly released Oxford Radar RobotCar Dataset
[7] and Astyx HiRes2019 [105]. It is a very limited number despite that this
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sensor provide rich information and helps in the environment perception and
taking the right decisions. For that reason, nowadays, it becomes essential to
exploit radar sensor in developing autonomous driving datasets.

Recording Conditions : The majority of the collected data is specialized in
urban driving, and was recorded in different locations: Europe, the United
States, Asian cities, etc. this variance in locations allows us to have a global
view of roads conditions, environments, etc.

One of the important criteria to have a complete dataset, is that it is collected
under different lighting and weather conditions in order to cover various
scenarios [76]. Nonetheless Kitti dataset is broadly used in this field of re-
search, the variety of its recording environmental conditions is reduced: it is
gathered just under daytime and sunlit days, similar to CamVid, CityScapes
and H3D datasets. In order to enrich light recording conditions [30],[20],
[188],[71] and [180] collected data considering both daytime and nighttime
all day long. Concerning the diversity of weather conditions, only BDD100k
and nuScenes covers rain and snow situations.

Actually, seasonal changes are not well covered as the majority of the
databases were recorded in short periods.

Dataset Size : We notice that since 2016, the number of the published datasets
becomes extensive because of this importance in the development of self-
driving cars. As the dataset size plays a key role in this field, it varies from
1,569 frames to above than 11 million frames, and it has grown over the
years. nuScences 1s considered as the largest dataset with 1,4M frames. Yet,
compared to the size of the image datasets related to the computer vision
community, the environment perception datasets remain relatively small.

Labels : Depending on the principal aim of the published dataset, objects
are labeled into various categories. Comparing the object classes existing
in each dataset, we can observe that the number of examples attributed to
each class is imbalanced. For example, we compare the samples related
to two different classes: car and pedestrian for nuScenes, Kitti and Kaist
Multispectral databases. We can observe that there are much more car labels
than pedestrian labels, as shown in figure 3.1.
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Figure 3.1: Comparison a normalized percentage of objects’ samples: car, person and cyclist
related to Kitti, KAIST Multispectral, Apolloscape (E: easy, M: moderate and H:
hard) and nuScene dataset [48].
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Dataset

Year

Modalities

Size

Annotation

Varity

2D | 3D

Daytime | Nighttime ‘ Fog ‘ Rain ‘ Snow

Categories

Recording Cities

CamVid [18]

Kitti [55]

Cityscapes [31]
BDD100k [188]

Kaist Multispectral [30]

ApolloScape [71]

H3D [119]

BLVD [180]

nuScenes [20]

2008

2012

2016
2017

2018

2018

2019

2019

2019

Camera
Camera

Lidar

Inertial sensors
Camera
Camera
Camera(stereo)
Thermal camera
3D lidar
GNSS

Inertial sensors
3 camera(stereo)
3D lidar
GNSS

Inertial sensors
3 cameras
Lidar

GPS

Inertial sensors
3 cameras
Lidar

GPS

Inertial sensors
6 cameras
Lidar

5 radars

4 scenes

22 scenes

100k

160

1000

X

X X

X

Table 3.2: Overview of some autonomous driving datasets
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3.3 PROPOSED DATASET

As mentioned in the previous section, the importance of multimodal perception tech-
niques for ITS and the extent of research efforts in this direction emphasize the need for
multimodal datasets that explore complementary sensors. Therefore, in this section we
present our proposed dataset and we detail its implementation, challenges and opportu-
nities.

3.3.1 Background

Various autonomous driving datasets have been published in order to enhance research
for environment perception. Most of these datasets are multimodal, combining different
heterogeneous modalities. While some of the existing datasets use narrow-band radar,
the UWB radar carries richer information. The UWB radar provides a signal that results
from the reflection of a transmitted UWB pulse on the object. The deformation of the
initial wave represents the signature of the object. This signature contains information
about the distance, the material and the shape of the object. Moreover, different objects
have distinguishable acoustic signatures that may help recognize each of them. In spite
of the usefulness of the acoustic data, we notice that none of the state of the art ITS
benchmarks uses acoustic modality.

Thus, we introduce OLIMP ( A heterOgeneous MuLtimodal Dataset for Advanced
EnvIronMent Perception ) (https://sites.google.com/view/ihsen-alouani), a new public
dataset for road environment perception. The introduced OLIMP dataset is a multimodal
synchronized dataset that was collected using four heterogeneous sensors to better un-
derstand the vehicle’s environment.

Our benchmark contains four complementary modalities namely: UWB radar data,
narrow-band streams, images and acoustic data. In fact, camera is affected by degraded
condition such as foggy weather, while, UWB radar is not influenced by neither luminos-
ity nor weather conditions. The acoustic data is orthogonal to the vision field. Concerning
the narrow-band radar, it provides position and velocity. To the best of our knowledge,
OLIMP is the first benchmark that contains UWB radar data and acoustic data.
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The data was collected in the campus of the Polytechnic University Hauts-de-France in
Valenciennes - France (Valenciennes is known for its foggy weather). Data was captured
during 3 months and consists of 47354 synchronized frames.

3.3.2 Hardware and data acquisition

On the one hand, we used four heterogeneous sensors: a monocular camera, an UWB
radar which is a short range radar, a narrow-band radar that is a long range radar and
a microphone. On the other hand, we exploited the EFFIBOX platform to acquire data
from the different sensors simultaneously [161]. In table 3.3, we highlight the sensors’
characteristics and their technical details.

(1 UMAIN radar: it is an UWB radar. The exploited kit is called HST-D3 developed
by the UMAIN corporation [163]. The kit comprises a UWB short radar with
a Rasperby Pi 3 for the acquisition. Following, the received radar raw data are
transmitted to the computer through the Raspberry Pi that is connected via TCP/IP
protocol. More details about the UMAIN radar are provided in the next chapter.

[] Narrow-band radar (ARS 404-X): This Premium sensor from Continental is a long
range radar that is able to detect multiple obstacles up to 250 meters. It genertaes
raw data that include: distance, velocity and radar cross section RCS [29]. Data
are transmitted to the EFFIBOX platform via CAN bus.

[] The EFFIBOX platform : is a software developed in (C/C++) dedicated to the
design of multi-sensor embedded applications. In addition, diverse adequate devel-
opment functionalities are available such as : acquiring and saving sensor streams,
processing/post-processing, visualization, etc.

It should be pointed that, the EFFOBOX platform has its own API(Application Pro-
gramming Interface) to communicate with the ARS radar, the network camera and the
microphone in order to acquire and record data. For the UMAIN radar, we developed
our API so that the EFFIBOX can communicate with the radar. Then, the acquired data
has been decoded following a particular protocol provided by the company. Besides, the
frame acquired from the ARS radar are decoded also according to the protocol provided
by the Continental datasheet.
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Figure 3.2: Data acquisition architecture

3.3.3 Sensors embedding

With regard to the sensors configuration, we designed a structure where all the sensors
are placed in the front view. To simplify the data fusion, the narrow-band and the UWB
radars and the camera were mounted on the same vertical axis. Figure 3.2 shows the
proposed data acquisition architecture, and figure 3.3 highlights the structure setup.

3.3.4 Sensor synchronisation

To develop an efficient autonomous driving dataset, sensor synchronisation is a challeng-
ing and inevitable task. In fact, sensor fusion often requires that collected data from all
the sensors have to be captured on the same time as each sensor has its own latency. To
illustrate this phenomena, figure 3.4 (a) shows a samples of a simultaneous acquisition
from different data streams.

Therefore, we developed our method to achieve an accurate alignment between the
modalities’ data streams. In the simultaneous data recording process, we register times-
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Sensor Sepcification

Measure latency

-A monocular camera, RGB images, 25 FPS,

AXISM1113 [5] 20 ms
640x480 resolution, angle of view: 65°-25°, 50Hz
-< to 6 range, provides signals,
UMAIN radar [163] - g P . g. 22,5 ms
each obstacle has its own signature, 4GHz.
-< to 250 range, provides distance; velocity and RCS, 77GHz,
ARS 404-X [29] 72 ms
+0.40 m accuracy for far range, £0.10 m accuracy for near range
< e .
Microphone CM-520 = to 20 range, +10dB sensitivity, it fits well with Not Applicable

video cameras, SOHz-16Khz for frequency response

Table 3.3: Sensor specifications and properties. Measure latency is the time necessary to collect

one complete data stream from the sensor.
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Figure 3.3: Structure setup

EFFIBOX

tamps relative to each sensor separately. We first start with synchronizing the radars
and the camera. Since these sensors have different frequencies and time responses, we
choose the narrow-band radar as a primary sensor. This is explained by the fact that the
narrow-band radar is the slowest among these sensors; it has the highest latency of a
complete measure compared to the other modalities as shown in Table 3.3. In fact, the
narrow-band radar raw data is represented in the form of a stream of discrete measures.
Each one of these measures comprises a main data frame including the obstacle’s num-
ber followed by successive information about each obstacle (distance, velocity, dynamic
property, etc.). Once a narrow-band measure is taken, we capture its timestamp and look
for the camera frame as well as the UWB frame that have the closest timestamp to the

synchronization narrow-band timestamp.
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Regarding the acoustic modality, the frame corresponds to an analog signal (sound). The
challenge is to find the most suitable time window size that: (i) corresponds to the exact
scene recorded at given timestamp, and (ii) is long enough to hold meaningful infor-
mation about the scene. After thorough explorations, we empirically choose an optimal
window size of 5 seconds for acoustic signal frame. This frame is recorded according to
the narrow-band synchronization timestamp mentioned above.

Overall, the proposed algorithm consists of selecting the timestamp acquisition of
every narrow-band measure and find the corresponding frames of the other sensors
which have the closest timestamp. The frames synchronization step is illustrated in
figure 3.4 (b).
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Timestamp I
!
* |
l Data 5 T ) D
Sensorl [=—» ~——>| Receive |-——> !
Transfer 3 Camera frame ’
f * Camera Image M
Data . i
Sensor 2 Receive
3 Transfer | | 3 UWB signal !
‘ * UWB radar W B
w ' w
Sensor 3 Lb T Data; —‘Ilb Receive —‘mb U =
UEDELES | * Microphone frame i
' ' ' I
' ' ' f
sensor4 |-L1=—p Tr[a):ser LT, | Receive | LT T Ly Microphone ‘:
' ' ' |

l Timestamp
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Figure 3.4: Frames synchronisation (ST: object stream, n: number of obstacles in the scene).

3.3.5 Labeling process

In addition to the background, we consider four classes: pedestrian, cyclist, vehicle and
tram since these are the most probably encountered possibilities in an urban transport
environment. The vehicle class contains cars, tracks, etc.

For the labeling process, we manually annotate data consecutively one image per three
as this task is time consuming and the changes between two successive images are
practically negligible. We avoided automatic annotation to have a high quality labeled
ground truth. Thus, we used the Matlab Image Labeler toolbox whom we have the license
as semi-automatic labeler tool.
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Data annotation includes 2D bounding boxes that present respectively x, y, the width W
and the height H of the object in pixels.

3.3.6 Scenario selection and data formats

In order to collect raw sensor data, we carefully choose diverse driving situations. The
duration of scenes differs and depends mainly on the situation complexity.

While recording our dataset, we consider diverse challenges that will be detailed in the
following subsection. Accordingly, we emphasize the data variety through employing
different locations (8 emplacements) that vary in terms of structures, environment, road
markings, traffic signs, etc. Some of these recording emplacements are illustrated in
figure 3.5.

Driving situations are carefully selected and collected under different lighting conditions,
we covered also sunny, cloudy and snowy weather.

For data format, the dataset provides synchronized frames of each scenario, the data are
stored as : RGB images, .txt files presenting UWB radar signals, .txt files of narrow-band
radar data stream and .wav microphone files.

Emplacement 1 Emplacement 2

Figure 3.5: Recording emplacements at the University Polytechnic Hauts-de-France

3.3.7 Dataset challenges

With the intention of developing a complete dataset, we cover realistic conditions for
environment perception (such as: cluttered environment, occlusions, lighting conditions,
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etc.). Thus, we employed several sensors to obtain redundant information or comple-
mentary data that may compensate the challenges evoked by each sensor. Figure 3.6
highlights the most introduced challenges in our dataset.

[J The object’s types exhibit an immense variability since they vary in terms of
appearance, movement and differ from the point of view of the class: pedestrian,
vehicle, etc. When recording our data, we take into consideration this camera-radar
challenge as we consider 4 categories of obstacles. Furthermore, our dataset was
performed by several pedestrians and cyclists of different ages, looks, body sizes,
etc. Moreover vehicles are varied: multiple cars, vans and trucks. We can see this
differentiation through UWB radar signatures shown in figure 3.7 that correspond
to each of the considered categories. Moreover, the considered objects can be static
or dynamic.

[] Distance is one of the fundamental challenges presented for autonomous driving
either for camera, the two exploited radars or even the microphone. According to
this, we consider two representations when capturing our dataset, depending on
the range: near and far obstacles.

L1 A further challenge is presented : the cluttered environment since generally dense
urban driving involves many traffic agents with a complex background. For UWB
radar, multiple reflections can influence the quality of the signal in the presence of
many objects. Concerning narrow-band radar, it generates many detections when
various obstacles exist, thus a selection process is required to identify the relevant
ones. So, we attempt to introduce several complex scenes during recording.

[ Furthermore, we consider diverse lighting conditions as we record data throughout
the day (morning, afternoon and sunset). We collect our dataset under sunny, foggy
and snowy weather to increase the diversity and cover the possible real driving
situations. In fact, the camera is highly sensitive to the last mentioned challenges
whereas the radar is robust against them.

[] Besides, the object detection task is extremely delicate to occlusions that occur
between several classes which is frequently presented in diverse cluttered scenes.
OLIMP includes severe occlusions situations combining the four classes as pedes-
trians that are often occluded by each other or by a cyclist, a vehicle or a tram, or
the opposite.

Furthermore, the inter and intra class challenges are depicted in figure 3.8 by presenting
the synchronized data acquired from the camera, the UWB radar and the microphone.
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(b)

Figure 3.6: Challenges presented in our dataset: a) weather conditions, b) lighting variation, c)
occlusions, and d) object types

3.3.8 Statistics and dataset organisation

OLIMP is organized in 6 subsets from CO to C5. CO contains background only, C1
includes either one, two or a group of pedestrians. C2 comprises cyclists, C3 and C4 in-
clude respectively vehicles and trams. The final subset C5 contains the different possible
combinations of the aforementioned classes introduced in OLIMP dataset considering
various scenarios. In fact, we only focus on the main moving road objects that can be
presented in an urban traffic scene.

The dataset consists of 407 scenes, and the number of scenarios in each subset vary
as follows CO: 12 scenarios, C1 :144 scenarios, C2:31 scenarios, C3: 51 scenarios, C4:
18 scenarios and C5: 151 scenarios.

Our dataset was performed by 93 pedestrians, 14 cyclist and using 90 vehicles and
2 trams. Precisely, the dataset presents 47354 data for each sensor. For the evaluation
protocol,% of the dataset is used for training, and % for test.
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Figure 3.7: Object signatures extracted from UWB signals (near obstacles)
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Figure 3.8: Inter and intra class challenges

3.4 FUSION FRAMEWORK

In order to propose an accurate multi-modal system for obstacle detection, in this section,
we aim to evaluate each modality individually in order to propose, afterwards, a fusion-
based system that takes advantage of each modality contribution.
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3.4.1 Image-based system

The multiple obstacle detection task can be divided into two steps: the recognition that
is insured via a probability estimation and the localization that defines the bounding
boxes. Thus, deep learning techniques have been widely adopted in image-based object
detection as it has been mentioned in chapter 2.

Among the known deep architectures used in the literature, we used the pretrained
MobileNet-v2 [147] model on a subset of the ImageNet dataset for detecting objects on
RGB images.

MobileNet-V2 building block

previous I

; td=intermediate depthl
]
1x1 pointwise conv |

3x3 depthwise conv

I
|
1x1 linear I
pointwise conv I
|
]
I

d' d'=output depth

Figure 3.9: MobileNet-v2 building block

Inspired by the constraint of computations for mobile devices, the the light-weighted
MobileNet networks was introduced in 2017 by presenting the MobileNet-v1 [128]. The
next version is MobileNet-v2 which further improves the previous released version by

employing a mobile inverted depth-wise convolution together with a residual connection.

The MobileNetV2 is based mainly on depthwise separable convolutions and it contains
two blocks. The first block is a residual block with a stride equal to 1 and the second block
is a downsizing block with a stride equal to 2. Its architecture contains three convolution
layers for both mentioned blocks: 1x1 convolution layer with RelU6 named pointwise
conv, a depthwise convolution and a 1x1 pointwise convolution. The MobileNet-v2
building block is illustared in figure 3.9. The overall MobileNetV2 architecture contains
17 of these blocks. These blocks are followed by a regular convolution layer, an average

54



3.4 FUSION FRAMEWORK

pooling layer and a fully connected classification layer. The network consists of 54 layers
deep and uses 3.5 millions of parameters [147]. In fact, the presiding model was chosen
due to its compromise between performance and execution time [128].

The results relating to the training of this network are presented in figure 3.10, and the

metrics that are chosen to evaluate the performance are P, R and AP. The mAP reaches
60,5 %.

As shown in figure 3.10, MobileNet-v2 achieved a significantly higher results on the
four categories in terms of precision. However, the image-based system provides high
rates of recall for all the classes which explains that the system generates too many false
negative samples.

Pedestrian

Cyclist
100 Vehicle
m Tram
86
84 81
80 77 76 75
70 7
8 60 54 53
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20
0
Precision Recall Average Precision

Evaluation Metrics

Figure 3.10: MobileNet results (%)

3.4.2 Radar-based system

To demonstrate the importance of using the UWB radar, we proposed a radar-based
system to discriminate the four classes for short distances. First of all, we classified
the whole signals using SVM in the intention of distinguish the classes, yet, the results
were not promising as the signals present rich information with a significant leakage
in the beginning. For this reason, we decide to exploit the narrow-band radar data to
achieve better performance. Though, the proposed approach consists of selecting ROIs
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in the signals acquired from the UWB radar in order to localize radar signatures that
characterise the obstacle. Afterwards, these ROIs will be classified using SVM.

In fact, narrow-band radar generates a list of targets with their position and velocity.
Thus, we injected the distances taken from narrow-band radar data to define the ROIs
in UWB signals. In this state, we focus our attention to obstacles which are located less
than 6 meters, while after various experiments the UWB radar is less efficient for a range
that exceeds this margin.

We can observe that we obtain multiple ROIs when matching the narrow-band points
with the signatures as the acquired radar are is too sparse. The detected distances are too
close and may refer to a same object. Thus, in the aim to select the relevant distance and
minimize the ROIs number, we proposed to exploit the velocity of each obstacle with
the distance. This leads to a better localising of the signature. For that, two objects that
are side by side and have the same velocity are considered as one target (represented in
green color) as shown in figure 3.11.
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Figure 3.11: ERadar point cloud representation with optimisation using velocity.

In addition to this, we set an amplitude threshold to validate the ROIs. Figure 3.12
illustrates this process.
The selected ROIs are classified using an SVM classifier with an Radial Basis Function
(RBF) kernel. The results of the UWB radar-based system are shown in figure 3.13.

According to our experiments and obtained results, we assume that the proposed radar-
based system can better distinguish pedestrians and cyclists. Aside from the fact that
the UWB radar provides a unique signature for each class, it is not able to classify tram
and vehicle. Since the results in table 6 include the overall dataset testing, the accuracy
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Figure 3.12: ROIs selection using UWB and narrow-band data.

results for those two classes are remarkably low. For experiments safety,the tram and the
vehicle are generally located a far from the radar, in a range greater than 6 meters. Thus,
reflections’ magnitude from these two classes are low compared to reflections acquired
from a cyclist or a pedestrian that are usually closer to the field of view of the radar. This
explains the difference of accuracy between the two latter classes and the first classes.
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Figure 3.13: Radar-based system results
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3.4 FUSION FRAMEWORK

3.4.3 Acoustic-based system

According to the state of art, the MFCC (Mel-Frequency Cepstral Coeflicients) are
widly used in sound processing and analysis as it provides a better representation of
the sound [151]. Hence, for acoustic data, we extracted temporal features and spectral
features using MFCC based on several experiments. These features are concatenated and
classified using SVM with RBF kernel.

As shown in the results presented in figure 3.14, using acoustic data leads to better
performance for the two categories tram and vehicle. This is due to the relevant sound
generated by these two classes. In other words, a walking pedestrian sound is narrow
compared to the tram sound that presents more information. For this reason, precision
and recall rates related to the tram and the vehicle classes are higher than the two others.
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Figure 3.14: Acoustic-based system results (%)

3.4.4 Multi-modality fusion system

To prove the significance of our dataset and the importance of multi-modality aspect,
we take advantage of the different sensors by proposing a fusion framework system.
This framework is built in the lights of the results obtained from the aforementioned
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systems. In fact, we identify the effectiveness of each sensor individually and its ability to
differentiate one class of another according to the results presented in Section 3.4.1-3.4.3.
The architecture of the proposed fusion framework is represented in figure 3.15.

The first step of the framework consists of extracting the labels from the outputs of
the MobileNet. If the extracted label is a car or a tram, we use the acoustic-based system
to verify the attributed label, and, all the labels are updated accordingly. Subsequently,
if the CNN-extracted label is neither a tram neither a car, the distance of the object
will be calculated. The process of calculating the object distance is explained in the
following. Thus, if it is a far obstacle we will keep the same labels of the CNN model.
Nonetheless, if it is a near obstacle then it will be either a pedestrian or a cyclist. Along
with, we will adopt the radar-based system to confirm the attributed label, since it can

particularly discriminate the aforementioned categories in a range less than 6 meters.

Thus, the results related to the fusion framework are illustrated in figure 3.17.
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Figure 3.15: Proposed fusion framework architecture

[] Distance calculation using camera images : In the aim to find a way to select
suitable object’s distance, We adopt to use the bounding boxes obtained after the
testing process using MobileNet-v2 network.

In fact, to perceive the depth information from images, stereo-vision techniques
are generally used. However, they require an intensive computation and in our
case we deal with a monocular camera. For this reason, we propose to exploit an
area-based approach to determine the object distance from the available bounding
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boxes. In other words, we look to find a relation between the object’s area in the
image and its real distance.

Therefore, the area of the bounding boxes is estimated at several locations for each
obstacle type and are stored in a training dataset. By using a curve fitting and
optimization techniques, the data give a non-linear relationship between the area
of the bounding boxes of the images and the real distance of the objects.

The relationship between the area of the bounding box and the object’s distance
can be modulated via Equation 3.1.

Object gisiance = &(Area)? + ¢ 3.1

where the relative parameters are : &« = 741.3 , b = -0.507 and ¢ = -0.3258. This
process is illustrated in figure 3.16.

It should be pointed that the obtained relationship between the area and the distance
using images is only valid for our employed camera.

ObjECtdistance = v((Area)b toe I:‘r/\ Object's Distance

estimated

Figure 3.16: Estimation of object distance using area of detected bounding boxes.

3.4.5 Discussion

On the one hand, we conducted various experiments using mono-modality and multi-
modalities to validate our dataset and to open perspectives the way for future research.
On the other hand, these experiments show the significant impact of exploring multi-
modality and data fusion for an ITS to improve the obstacle detection task.

In fact, the fusion levels exploited in our work are the following: low level, intermediate
level and late level. We can recognize the low level fusion when projecting narrow band
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Figure 3.17: Fusion framework results (%)

data into UWB signals to define ROIs. The intermediate fusion consists of concatenating
temporal and spectral features for acoustic data. And the late level is exploited in decisions
fusion to obtain the final decisions of the total framework.

From analysing the fusion results presented in figure 3.17, we notice that the performance
has been clearly improved in terms of precision. Some detection results that include
bounding boxes and scores are presented in figure 3.18 using just image-based system
and with using fusion framework. The enhancement brought along with the acoustic
system has a higher importance compared with the contribution of the radar-based
system. This is mainly because of the range and power limitations of the UWB radar,
and also owing to the sparse and noisy data provided by the narrow-band radar. Despite
this fact, the UWB radar provides a unique signature for each type of object with a low
price compared to the new sophisticated radars for short range applications. For this
reason, this radar is more explored in the next chapter. Thus, we will focus especially on
improving this single-sensor performance because it carries rich information, and due to
its important short-range settings aspect. For the acoustic system, the distance between
the obstacle and the sensor presents an important challenge. Moreover, obstacles like
pedestrians and cyclists have low magnitude acoustic signals and could not easily detected
through acoustic based systems. In addition, The considered environments in OLIMP
are challenging and present various confusing categories such as metal infrastructure,
trafic signs, glass-surface buildings, etc.
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Finally, The obtained results for object detection are promising and show the impor-
tance of exploiting multimodality for vehicle environment perception. To the best of
our knowledge this is the first dataset that has exploited UWB technology and acoustic
data, this shows the originality of our work. For this reason, we encourage research on
proposing new fusion networks that use either two modality or more to enhance the
vehicle environment perception.

Detection
results
before fusion

Figure 3.18: Detection results before and after fusion

3.5 CONCLUSION

In this chapter, we have presented a state-of-the-art of available datasets that were in-
troduced for environment perception. By analysing the characteristics of each dataset,
we have concluded that there is no dataset that employs UWB radar and acoustic data.
Following, we represented our multi-modal dataset by detailing its hardware, its scenar-
10s, employed sensors, etc. To validate our dataset, we conducted various experiments
using mono-modality and multi-modalities, then, we proposed a fusion framework that
enhances the detection performance.

In the next chapter, we will focus on detecting objects using just the UWB radar. Thus,
two detectors will be proposed one based on entropy and the other a deep-based detector.
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4.1 INTRODUCTION

4.1 INTRODUCTION

The development of high performance obstacle detection systems is a safety critical
task for intelligent and autonomous systems. Therefore, various sensors are employed to
efficiently detect and recognize objects. Due to its robustness to weather conditions, radar
1s a promising sensor for environment perception systems. The main radar technologies
that have been exploited in this domain are wide-band radars for short range applications
and narrow-band radars for long range settings. In this chapter, we focus on the UWB
sensor as it carries rich information.

In section 4.2, the UWB radar specifications are depicted. An overview of existing
hand-crafted and deep learning-based methods using UWB signals are presented in sec-
tion 4.3. In section 4.4, a novel entropy-based method is proposed for UWB radar-based
multi-target detection and we discuss our results and their potential impact. Following,
we propose the first framework that exploits LSTM with UWB signals for multi obstacle
detection in an outdoor complex environment. Afterwards, we exhibit a comparison of
our results with the state of the-art-techniques in section 4.5.2. We conclude the chapter
in section 4.7.

4.2 UWB RADAR SPECIFICATIONS

In 2002, the US Federal Communication Commission (FCC) allows the unlicensed of
UWRB operations and commercial use of UWB-based devices [27]. Firstly, intended for
military purpose applications, the UWB radar has been exploited in various applications.
In fact, three main applications are defined (i) communications and measurement systems
[40], (ii) imaging systems as through-wall imaging systems [154], and medical systems
[1], (iii) vehicular radar systems [92]. The FCC permits a frequency range of UWB of 3.1
to 10.6 GHz in order to avoid the interference along the existing communication systems
[27]. In addition, it defines that the UWB signal should has a fractional bandwidth more
than 500 MHz or characterized by 20 % of the center frequency.

The UWB radar transmits a very short electromagnetic pulses with low energy in the
order of sub-nanoseconds. These short pulses provide a huge interest in short range radar
applications [144]. Various types of waveforms are used to generate the UWB pulse as
the Gaussian and its derivatives. Besides, the Gaussian monocycle is the commonly type
that is utilized as UWB impulses.
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Basically, UWB radars can be categorized into two groups: pulse-based radars (e.g.
time domain) that are typically referred to impulse-radio UWB (IR-UWB) and frequency
modulations-based radars refereed as CW UWB radars (e.g. frequency domain) such as
the frequency modulated continuous wave (FMCW). A comparison of the two technolo-
gies is provided in Table 4.1. In our work, we are interested in IR-UWB radar.

Table 4.1: Comparison between CW-radars and IR-UB radars [99]

UWB radar CW UWB radars IR-UWB radars
Technology
Time stablility Stable Stable
Availability Require highly linear Available and a widely

signal generator used technology
Cost High cost Inexpensive technology
Data acquisition Time | Slow data acquisition (ms) Moderately fast data acquisition (ys)

. Relatively immune towards Relatively immune towards

Interference Immunity

narrow-band interfernce narrow-band interfernce

. Might h 1 intaining 1i
Dynamic range They possess very good dynamic range ight have a problem maintaining lincar
dynamic range

Power Good power budget Low average transmitted power
Range gating No possiblity of range gating Allow range gating

In fact, the UWB radar has interesting characteristics for ITS applications as it has a
better resolution than existing narrow-band radar devices. It consumes low power, it has
a simple implementation and has a high data rate commutation. The UWB radar enables
the penetration in dielectric materials. Therefore, the major property of the UWB radar
consists of the distortion of the initial pulses. This signal deformation is impacted by the
obstacle properties and thereby represents the object signature. This signature contains
information that goes beyond the distance and the velocity; it is shaped by the object
material, its shape and size [143]. The UWB is able to detect stationary and moving
obstacles on the vehicle’s surroundings (on and nearby the road).

The target’s distance R is measured based on the delay between the emission and
reception (T), c is the speed of light. This relation is presented by Equation 4.1. The
target’s range calculation is illustrated in figure 4.1.

R = o> 4.1

These aforementioned characteristics show that the use of such radars is promising
in detecting and recognizing objects, especially in short range applications, contrary to
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Figure 4.1: Target range calculation using automotive radar.

narrow-band radars that detect range targets with low accuracy and generate sparse data
that contain numerous false alarms [99].

While the UWB radar offers rich information that is complementary to other sensors,
its deployment presents serious challenges. One of the main challenges is differentiating
targets from noise, which can practically be formulated as a segmentation problem.

42.1 UMAIN radar

The radar considered to record the OLIMP dataset, is an UWB radar developed by the
UMAIN Inc company [163] entitled HST-D3. It has an efficient range of 6 meters and a
frequency range in [3GHZ, 4GHZ] with a bandwidth of 0.45-1Ghz.

The HST-D3 radar is a combination of HST-S1 Pi module radar and a Raspberry Pi 3
for the acquisition. It is a high-resolution radar transmitting and receiving UWB impulse
on a single chip. Moreover, it has a Baudrate of 921600 and the UWB radar signal
comprises 660 samples per frame. Total frame time is renewed every 22.5 ms and the
interval per value in a single frame is about 2.0303 cm.

This radar provides implemented algorithms as respiration detection, human and animal
detection. In addition, the user can develop and implement its own algorithms.
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The UMAIN radar contains an UWB monopole and UWB directional antennas. We ex-
ploit the available directional antennas since they guarantee better target echo-to-clutter
and noise ratio. The radar is presented in figure 4.2 and table 4.2 exposes the radar
specifications.

In fact, as we mentioned in section 4.2 UWB signals have excellent multipath immu-
nity, and less susceptibility to interference acquired from other radios, due to its wide
bandwidth property [59]. However, the limitation of the UMAIN frequency range is
that interference can appear due to WiMax(Worldwide Interoperability for Microwave
Access) technology-based applications. Concerning the atmospheric attenuation, it is
negligible for short ranges fields using the S-band [36].

Table 4.2: Umain radar specifications

Parameter Value and comments

Frequency range 3~4 Ghz
Bandwidth 0.45~1Ghz
Output Power Typ. -25dBm
UWB Directional Antenna : Gain = Avg.7 dBi
Antenna angle (@-3dB) = 56.0° (X-Z plane)
77.5° (Y-Z plane)

Size= 76mm x 58.5mm x 17mm

Antenna Specification

Number of samples | 660 samples per frame

Sampling frequency | 7,69Ghz

4.3 RELATED WORK

4.3.1 Hand crafted-based detectors using UWB radar

Most of the studies conducted on UWB-based obstacle detection systems have taken
advantage of the well-known of three mainly approaches that have been proposed in
the literature: correlation-based method as the matched filter [91], higher order statistics
(HOS) [104] and constant false alarm rate (CFAR)[53]. These techniques are known as
hand-crafted based detectors.
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Figure 4.2: Used HST-D3 UWB radar hardware specifications.

HOS technique relies on higher-order moment spectra to analyse random process
characteristics. This technique is commonly used to suppress Gaussian noise [104].

CFAR techniques [53] [116] detect objects using an adaptive threshold that is defined
based on the background noise and local information. Several algorithms have been
extended from CFAR including the cell averging CFAR (CA-CFAR) [28], the order
static CFAR (OS-CFAR) [12], the Smallest Of CFAR (SO-CFAR) [21], etc.

In [146] the correlation is used to detect either a car, a metal plate, a motorway barrier
or a pedestrian. A recent adaptive clutter suppression algorithm is proposed in [187]
based on CFAR technique, for human detection and positioning. An hybrid method was
introduced in [141], where a radar target detector based on the combination of HOS and
CA-CFAR techniques was deployed. Nevertheless, experiments were performed under
controlled scenarios. A new thresholding method based on CFAR technique for UWB-
based detection application is proposed in [129]. The approach takes into consideration
false alarm and miss-detection criteria. New parameter entitled constant miss-detection
rate (CMDR) is defined. The final threshold is calculated by adding the CFAR and
CMDR rates. Experiments show good performances, however, they are just carried out
in indoor environment using self-recorded dataset. A recent work in [82] proposes UWB
radar-based system to detect metal lane. The energy of the echo is calculated and if
it exceeds a fixed threshold, the lane is detected. The use of this method requires a
specific infrastructure. Moreover, energy values are dissimilar for different object types
compared to metal obstacles energy.
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In fact, almost of the aforementioned related work are a threshold-based methods.
Otherwise, these techniques depend essentially on the amplitude of the object’s signa-
ture. Moreover, it should be pointed that the considered environment and scenarios are
controlled using restrained datasets. The aforementioned algorithms have been exploited
ever since the development of the conventional radar.

4.3.2 Deep learning-based detectors using UWB radar

To the best of our knowledge, UWB-based systems that rely on deep learning techniques
are employed only for indoor applications as: activities recognition [142], indoor people
localization [123], recognizing movements during sleep [122], etc.

Deep learning methods have been used with 2D UWB data, thus, this dilemma is
considered as an image processing-based challenge. In [24], an SFCW-UWB radar is
used for fall detection which generates time-frequency spectrum as UWB data. Hence,
the employed deep learning architecture is the fine-tuned Alexnet model. The authors in
[85] convert the time-series UWB data to a time-frequency representation by Stockwell
transform. Afterwards, the reshaped images serve as inputs of the CNN. The exploited
CNN model is LeNet. In [1], UWB data are stored as 2D matrix including the slow-time
and the fast-time properties. Subsequently, it is converted to a grayscale image, later to
an RGB one. GoogleNet was adopted as deep learning architecture for hand gesture
recognition. In [122], weighted range-time-frequency images of UWB radar are utilized
as input for CNN to classify human sleep postures.

In point of fact, the 2D radar imaging based systems are no longer considered a signal
processing dilemma as much as an image processing challenge.

Otherwise, 1D UWB signals are likewise employed with deep learning for indoor
applications.
To enhance transportation safety, an UWB radar is installed in the rear view mirror to
estimate the number and the location of the in-vehicle people. Multi-layer perception
is employed where the time-sampled radar signal data are the input of the network. To
define the suitable parameters, the number of hidden layers are adjusted. Compared
to machine learning techniques, the proposed network achieves better results [92]. For
activities recognition, a CNN-LSTM network using three UWB radars is implemented in
[102]. Features are extracted using CNN architecture that includes: two 1D convolution
layers where 64(1x3) filters are used, Relu activation function, a 1D max pooling layer.
Subsequently, the output is flattened into 1D vector to feed the LSTM network that
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contains 2 LSTM layers. Promising results are obtained. Jiang et al. [77] trained a CNN-
LSTM to classify Line-Of-Sight (LOS) and None-Line-Of-Sight (NLOS) signals in the
context of indoor positioning applications. The UWB channel impulse response is used
as input of the CNN that deploys two conventional layers. Afterwards, the CNN outputs
are linked to the LSTM network. Bi-direction LSTM and a stacked LSTM are used. The
achieved accuracy is equal to 81%, but, the training dataset was limited.

The aforementioned applications consider only indoor environments, using either a
2D radar imaging or a 1D UWB data. Nevertheless, ITS environment includes complex
driving situations with various type of targets. Moreover, in our case the choice of
adopting 1D radar signal rather than using a 2D radar data representation is justified by
the fact that we deal with an ITS application where response time is a crucial criteria.

4.4 ENTROPY-BASED DETECTOR

4.4.1 Background

While UWB radar has been widely used for obstacle detection, most of the reviewed
works are evaluated on restrained datasets that have been recorded under controlled
indoor environment. Furthermore, these techniques rely on the signature amplitude,
which depends on the distance between the radar and the object location. This represents a
fundamental challenge for UWB signals segmentation using amplitude-based techniques.
This challenge is even more critical for human obstacles because of their low reflection
compared to metallic obstacles.

Thus, the fundamental challenge of the detector is to distinguish a target from a
received additive noise. To tackle this challenge, we suggest to use the signal entropy
as an indicator of the existence of useful portions of the signal that can be differentially
extracted out of the channel noise. So, in our case, we aim at segmenting 1D UWB signal
used for an outdoor setting with a complex environment.

Recently, entropy-based information using UWB technology has been exploited in
various fields of research as telecommunication[186], medical[15], etc. In [101], mutual
information (MI)-based methods are applied to detect targets through foliage based on
the calculation of entropy and conditional entropy. The defined threshold is log2(level of
quantization of the signal). In fact, if the MI of the received echo exceeds the threshold,
the target is detected. The proposed approach in [182] adopts the permutation entropy
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(PE) for detecting human vital signs. As the PE detects dynamics changes in time
series signals, it is employed to determine the range between the radar and the human
target. For people-localization-based on UWB technology, the Shannon’s entropy is used
to accurately estimate the time of arrival of the first path in indoor environments. It is
detected by identifying a great decrease in the entropy curve, and that exceeds a threshold
value which has been defined via numerical simulation[186].

While the entropy is a measure of the signal’s complexity, different types are employed
in the literature as: PE, conditional entropy, Shannon entropy, etc. In fact, every type of
entropy is suitable for a specific application and data. For our application, the entropy is
applied as a segmentation tool for UWB signals in outdoor environment.

From an information theory perspective and as defined by Shannon [153], the Shan-
non’s entropy is a theoretical metric of information. It is attributed to an information
source or a given signal, and models the amount of information contained in this source
or vehiculated by the signal. The Shannon’s entropy may be used globally or locally:
taking into account the whole data or a subset of data [ 16]. Therefore, to localize objects
within an UWB radar signal, the use of the Shannon’s entropy should be helpful in
distinguishing useful ROIs from noise. This is based on the assumption that compared
to noise, reflections from road obstacles present richer information. An illustration of
this assumption is given in figure 4.3. The figure represents a received signals from
two different objects (a cyclist and a vehicle) and its corresponding entropy curves. The
bounded region (in purple) within the received signal represents the correct ROI which
is depicted by the highest entropy value.

Thus, our hypothesis is that the signal corresponding to an obstacle has potential infor-
mation that is different from a random Gaussian noise. Thereby, the entropy distribution
within each part of the signal should be different. Therefore, we suggest to exploit a
differential entropy analysis of the received echo to localize ROIs within the signal.

In the following, we first provide a theoretical basis that backs the use of entropy for
segmentation. Then, we detail our segmentation method.

4.4.2 Theoretical basis

In this work, our hypothesis is to use the signal’s entropy as an indicator of the exis-
tence of useful parts of the signal (i.e., parts corresponding to obstacles in the radar’s
neighborhood) that are distinguishable from noise. Accordingly, we attempt to show that
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Figure 4.3: Illustration of the entropy variation of two different received UWB signals.

statistically, a useful signal should contain higher entropy than a noise signal. Notice that
this observation will practically depends on different real-life parameters. Hence, in this
study we make the following assumptions:

[J Since UWB radar is mainly used for urban traffic situations because of its short
range, we assume a propagation model of an UWB radar that follows Rayleigh
distribution, as shown in [108].

(1 We assume an Additive White Gaussian Noise (AWGN) in the propagation channel
of the UWB radar.

The received UWB signal 7(t) can be modeled following Equation 4.12:
r(t) = s(t) +n(t) 4.2)

where s(t) is the received echo and n(t) is the noise of the transmission channel of the
UWRB radar. In fact, the process of emitting and receiving an impulse by the UWB radar
is labeled as a radar scan, and the received echo of the received signal of the it radar
scan 7;(f) can be modeled by Equation 4.3.

M;
ri(t) = Y agx(t —ty) + n(t). (4.3)
k=1
where: x(t) is the transmitted pulse that is received as M; reflected signals, a;; is the
amplitude, ¢ is the reflected back time of the pulse signal after being transmitted from
the radar, t; is the delay of the k" received signal in the i*" radar scan, n(t) an additive
Gaussian noise of the transmission channel.
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Therefore, ¢ can be observed with corresponding probabilities py Vk € [1, L] and the
entropy H is expressed by Equation 4.4.

L
H=— ) prlog,(pk) (4.4)
k=1

The Rayleigh and the normal distributions have been proven log-concave in [6]. Hence,
based on the work on [13], the entropy could be approximated as: H(X) =~ log(c),
where X is a random variable following a log-concave probability distribution and ¢ is
its standard deviation.

Based on a statistical analysis of the distribution of both noise and useful signals (i.e.

those in the presence of an obstacle) from a real-world dataset (OLIMP) [106].

We found that 0;,pjse = 0.0056 and 0pstc1. = 0.0416. Hence, 10g(0pise) < 10g(Topstace)s

as shown in figure 4.4.

Therefore, we can conclude that for a given UWB radar signal propagated in a Rayleigh
fading channel with AWGN, we statistically have: H(N) < H(U), where N and U are
random variables that represent the noise signal and the useful signal, respectively and
H is the Shannon entropy.

In the following subsection, we detail our proposed segmentation approach.
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Figure 4.4: Comparative distribution of noise signals, and signals in presence of an obstacle.
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Figure 4.5: Entropy-based detector architecture

4.4.3 Entropy-based segmentation

This subsection explains the proposed method by which ROIs are detected within the
signal. Algorithm 1 details the ROI identification process and figure 4.5 presents the
architecture of the proposed approach.

The received echo is partitioned into fixed-size overlapping sliding windows. The
sliding window’s size (W;j;4.) is empirically defined based on the objects’ signature
length. As the overlapping sliding windows should not miss the signal’s valuable parts,
we slide the window by one sample at a time. Subsequently, the Shannon’s entropy is
calculated for each window. The variation of the entropy values is then obtained by sliding
the window through the whole signal. Since the entropy’s value increases relatively with
the rise of the signal complexity (for example: presence of different objects or noise), we
localize the local maximums presented in the entropy curve in a range of Wj;4, length.

Local maximums within the same W, 5, are ignored to prevent false detections that can
be recurrent for the same object. The obtained maximums represent potential candidates

for ROIs. Some of these candidates may be false positives generated by the noise entropy.

Therefore, to detect only relevant entropy peaks, and by consequence limit false
positives, a selection process is designed based on the study in Subsection 4.4.2. In fact,
an empirical threshold is defined to withdraw noise-generated entropy peaks. Therewith,
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if a local maximum of the entropy is greater than the fixed threshold, a ROI is detected.

The candidate is considered as noise otherwise. The threshold definition methodology
is detailed in Section 4.4.5.

Algorithmus 1 : Entropy-based segmentation technique
Data : Received signal r = [r¢], Sliding window length: Wslide ; Threshold:
Thr;
Output : ROI
for t <— O to length(r) — Wslide do
Sw=r(t+1,t+ Wslide);
// Calculate the Shannon’s entropy
Eny = Entropy(Sw)
end for
// (peaks, indexes) of local max.
7 [LmaxEn, IndxLmaxEn| = Findpeaks(En;);
8 // Compare LmaxEn with the threshold
9 ROI =0
10 Vi € IndxLmaxEn
u if LmaxEn; > Thr then
12 // Define the ROIs
13 | ROI = Append(ROI, [i : i + Wslide]);
14 end if
15 return (ROI)

S i A W N =

4.4.4 Experimental setup

OLIMP dataset contains four object classes: pedestrian, cyclist, vehicle and tramway, and
itincludes various urban driving scenarios. In the following experiments, we compare our
approach to HOS technique, CFAR technique and the work in [141]. A brief description
of these techniques is provided in the following.

(a) HOS

The HOS algorithm relies on the higher order moment spectra in the intention of
interpreting and analyzing the characteristics of a random signal.

One of the main advantages of employing this technique is its ability to reduce the
Gaussian noise and the secondary lobes. Moreover, it characterizes and detects
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the non linearity in the data [145]. Thus, Hos is used to detect various obstacles
by applying a simple threshold. In this work, the 4/ order cumulant based on
Tuganit4 algorithm is implemented for HOS method.

The Tugnait4 Algorithm was introduced by Jitendra K.Tugnait [162] in 1989 and
it is expressed by Equation 4.5.

cumy(c(i —ig),c(i —ip),r(i),r(i))
VIcuma(e(i), (1)) [euma (r(i), r(7))]
where: ¢ is the reference signal, r is the received signal, ij is the decision time
index and cumy is expressed by Equation 4.6.

Ja(io) = (4.5)

CA-CFAR

For CFAR, the automatic threshold CA-CFAR detector is considered. The basic
principle of this technique is shown in figure 4.6. In fact, the CA-CFAR is based on

local information to adaptively define a threshold to detect the targets [52] [136].

The parts on the two sides of the Cell Under Test (CUT) are named guard cells,
these cells do not participate when estimating the ground clutter power in order
to avoid missing detection. The detection threshold T is expressed in Equation
4.7 [113]. The CA-CFAR detector decides whether there is an object or not by
comparing the power of the CUT to the threshold.

1 1 n n
T=9Z=57(P+Q) =77 (Z pi+ ;%’) 4.7)

where: p; and gq;, (i,j = 1,...,n) are the samples of the reference cells on both
positions of the CUT, P and Q are the power summation related to the front and
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the back edge reference cells, Z is the average of all the reference cells and y is
the threshold coefficient that depends on the desired probability of false alarm rate

Pfy.

>

Cell Under Test (CUT) Q. present

Guard Comparator —
Cell ]
Reference Cell Reference Cell O absent

<T
Py e P CuT Gy e q,
i ...... l l ...... l
% )X
\_l P 0 l_I
CA:(P+Q)/2n
Z
Vg
T=yZ
Multiplier

Figure 4.6: CA-CFAR algorithm architecture [113]

(c) The work in [141]

The work in [141] is a combination of the HOS technique and the automatic CA-
CFAR detector. In fact HOS is employed first to suppress the noise. Afterwards,
the CA-CFAR is applied on the received signal following the elimination of the
noise.

In our work, all the experimental results are evaluated in terms of P, R and F1-score
that balances P and R, these metrics were presented in chapter 2 in section 2.4.

Moreover, to evaluate the performance we used the Multiple Object Detection Preci-
sion (MODP) metric. This measure evaluates the positions’ precision of the accurately
detected objects. The overlap information between the system’s detection and the ground
truth is used to calculate a Mapped Overlap Ratio (MOR) for each frame as defined in
Equation 4.8.

Nm n .
MOR =} & Di (4.8)
1; Gi Upi
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Where Gi is the bounding box of the i ground truth and Di is the bounding box of the
it" detection and Nm is the number of the mapped outputs. For a single frame, MODP
is obtained by normalizing MOR as shown in Equation 4.9.

MODP(t) = MOR (4.9)
Nm

Hence for a multiple frames, the score MODP is determined by Equation 4.10.

Nframes MODP ¢
MoDP — i1 )

(4.10)
N frames

where: N f rames is the total number of frames.

All the experiments were performed on a PC with an Intel (R) core (TM) i7-8565U
CPU @ 1.8 GHz, 16 GB of RAM, using Matlab 2020a.

4.4.5 Threshold definition

Noise-induced entropy peaks need to be distinguished from actual objects-related entropy
ones. A threshold-based decision is set in order to minimize the false positive rate of the
proposed detector. Practically, we attempt to empirically identify an entropy threshold
that allows the distinction of useful signal from noise.

To guarantee the most possible generalization, the OLIMP dataset has been randomly
partitioned into two different subsets: reference and testing dataset. On that account,
the threshold is determined related to the reference set, and the method is evaluated
on the testing samples using the defined parameter. This evaluation methodology is
coherent with state-of-the-art obstacle detection evaluation methodology[38]. To define
the suitable value that ensures an accurate and reliable radar-based obstacle detection,
the threshold has been explored based P, R and F1-score metrics. figure 4.7 shows the
exploration results.

We selected the threshold that maximizes the F1-score. This choice is justified since
F1-score is a measure that achieves a trade-off between P and R and yields to an accurate
reliable system. The highest F1 occurs at the threshold value of 0.0153, which is thereby
selected as the empirical threshold.
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Figure 4.7: Threshold definition based on exhaustive space exploration. The threshold corre-
sponds to the highest F1-score.

4.4.6 Results

To validate the efficiency of the proposed method, a comparative benchmarking is
elaborated. The considered targets in this comparative study are: Pedestrian, Cyclist, Car
and Tram. The obtained results are illustrated in figure 4.8 and figure 4.9. It can be
seen from the figure that the proposed approach provides higher detection performances
compared to HOS, CA-CFAR and [141] in terms of P, R and F1 score.

Since we are using real-world conditions benchmark, the CA-CFAR achieves the
lowest performance. Its performance is degraded when challenged with the presence of
multiple targets. HOS-based detector enhances the accuracy detection since among its
characteristics it is able to suppress noise in the received signal. Nevertheless, HOS fails
when a target is located further than another since its signature amplitude will be lower
and the obstacle is consequently ignored.

To visualize this behavior, figure 4.10 gives an illustration of the aforementioned
limitations for multiple targets detection. The figure shows that while HOS and CA-
CFAR fail to accurately detect all the real targets presented in the UWB signal by
generating either false positives or missdetections (false negatives), our method can
determine the right targets’ positions.
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Figure 4.8: Experimental results: Precision, Recall and F1-score using HOS, CA-CFAR, [141]
and our method.
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Figure 4.9: Experimental results for pedestrian detection using HOS, CA-CFAR, [141] and our
method.
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Figure 4.10: Illustration of multiple-target detection limitations using HOS, CA-CFAR and En-
tropy detectors

Due to physical characteristics, pedestrian’s wave reflection amplitude is generally
lower than other objects’ reflections (especially metallic), and it gets further attenuated
when moving away from the radar. This makes pedestrian detection challenging for
HOS, CA-CFAR and [141]. Thus, we reported the performance related to pedestrian
detection using the implemented detectors in figure 4.9. As depicted from results, even
though the reflection intensity of a human body is low, the proposed method reports
the best overall performance for pedestrian detection, and with even higher relative
improvement. For example, while for all objects (figure 4.8), we achieve 6.11% higher
precision than HOS, this improvement is up to 12.75% for pedestrian. In terms of recall,
our approach provides an improvement of 49.7% for all objects and an increase of
65.63% for pedestrian detection compared with the same technique. These results show
the robustness of our technique and can be explained by the fact that it is more concerned
with entropy within the signal than the signal magnitude.

To further explore the effectiveness of entropy-based obstacle detection, we purpose
to present results amplitude-wise. This experiment allows us to evaluate the robustness
of the proposed technique comparatively both in terms of signal amplitude, but also in
terms of the obstacle distance. In fact, the amplitude of a given reflected signal on an
object decreases accordingly with the corresponding object distance from the radar.
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Figures 4.11, 4.12 and 4.13 show respectively the precision, recall and F1-score of
the different obstacle detection techniques as a function of the obstacle’s amplitude (in
the ground truth).

As reported in figure 4.11, HOS precision degrades proportionally with the target
amplitude. Objects with low amplitude are not detected as this technique is sensible to
high magnitude. CA-CFAR and [141] have practically balanced performance in terms of
precision for all the amplitude ranges. Most of the state-of-the-art techniques show higher
detection performance in high amplitude cases, i.€., close obstacles. Surprisingly, for our
method, we noticed a counter-intuitive precision increase as the amplitude decreases.
This observation will be explained later.

According to the presented results in figures 4.12 and 4.13, the performances of
HOS, CA-CFAR and [141] degrade proportionally with decreasing the object amplitude,
which is correlated with increasing the object distance. In fact, as the object is moving
away from the radar field, its amplitude reflection attenuate and its signal amplitude
becomes close to noise signals. Since these techniques depend particularly on the signal
amplitude, several objects will not be detected, thereby resulting in false negatives,
which explains the detection performance degradation (R). Nevertheless, the entropy-
based method results increase remarkably as the object’s amplitude attenuates. In low
amplitude cases, our technique succeeds in limiting false negatives, thereby increasing
recall. This observation is important since the proposed detector is robust even with
challenging low amplitude targets. In the following we attempt to explain the observation
of increasing detection performance with challenging signal situations.

We believe that this property is due to the increasing number of multipath components
of the reflected signal, which increases the entropy within the corresponding signal. In
fact, as illustrated in figure 4.14, the number of reflected signals goes higher with distant
objects. While in the case of further objects the overall reflected signal amplitude is
lower, magnitude-based techniques either loose in sensitivity or keep the same levels,
our technique takes advantage from the differential entropy enhanced by the reflected
multipath components. This observation is obviously limited by the radar range.

Furthermore, the MODP results related to the implemented detectors are reported in
Table 4.3. The presented performances show that our detector can correctly detect targets
position more than the other techniques with a MODP that reaches 0.42.

Finally, in terms of complexity, the execution time to detect obstacles in a received
signal using the implemented detectors are reported in Table 4.3. From the results, we
can observe that our proposed detector has the lowest execution time.
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Figure 4.11: Precision results over varying target amplitude in terms of P, R and F1-score using
HOS, CA-CFAR, [141] and our method.
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Figure 4.12: Recall results over varying target amplitude in terms of P, R and F1-score using
HOS, CA-CFAR, [141] and our method.
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Figure 4.13: Fl-score results over varying target amplitude in terms of P, R and F1-score using
HOS, CA-CFAR, [141] and our method.

(a) (b)

Figure 4.14: Illustration of multipath component vs distance: (a) close object with high amplitude,
(b) object in further location with low amplitude.
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Table 4.3: MODP and execution time results

HOS | CFAR | [17] | Our Method
MODP 0.22 | 0.17 |0.24 0.42
Execution time(s) | 1.34 | 1.41 | 1.52 1.26

4.47 Discussion

An ITS is a safety-critical domain where achieving robust automatic environment per-
ception is a challenging keystone. While most of the environment perception systems are
based on camera and lidar sensors, UWB radars show interesting characteristics such as
robustness to weather and luminosity challenges. This aspect could be complementary
to other modalities and promising to enhance computer vision reliability.

In this work, an entropy-based ROI identification approach for UWB radar detector
is proposed. The proposed technique is designed to identify relevant information in the
received signal, hence, to differentiate a real object from noise based on their respective
vehiculated entropy.

In fact, the entropy-based segmentation method for UWB radar signals technique
exploits signal entropy instead of amplitude to localize useful parts of the signal, thereby
detecting obstacles. A threshold based on the maximization of the F1-score is determined.

Our results show an overall improvement of detection performance using our technique
compared with related work. In a detailed look at the results we made a surprising
property of our technique that consists of an increase in detection robustness with lower
amplitudes, and consequently further obstacles from the sensor. Although above the
considered objects’ distance, the method will be limited as Signal-to-noise ratio (SNR)
will be very low, in our case we are interested in detecting near-range obstacles. For this
reason, even with low amplitude, the entropy-based method can differentiate between
noise and real target. This aspect is due to the wireless signal propagation multipath
components on the signal entropy. On the other hand, there is room for improvement.
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4.5 LSTM-BASED DETECTOR

4.5.1 Background

As we mentioned before, one of the fundamental challenges that could occur is distin-
guishing the real target’s signature from noise within UWB signals. For this purpose,
various studies have been conducted by proposing UWB-based detectors. Even though
the interest of processing UWB data via deep learning techniques is growing, there is no
work that treats deep with UWB signals for outdoor environment perception to the best
of our knowledge.

In this section, we propose the first framework that exploits UWB signals with LSTM
network in an outdoor environment involving complex urban driving situations for multi-
target detection. As the UWB received signal is a time-series data, the exploitation of
a RNNss is suitable to exhibit the temporal dependencies. Therefore, the main intention
of the developed network is to discriminate the real target from noise within an UWB
received signal. A comparison between our proposed approach and the state-of-the-art
techniques based on expanded experiments using OLIMP is detailed in the following.

4.5.2 Proposed LSTM-based detector

In this section, we present firstly the background of the RNNs and LSTM networks,
followed by a description of the proposed approach.

4.5.3 RNNs for sequential data

The independence among the data samples is one of the fundamental assumption for
neural networks. Nevertheless, this assumption does not deal with sequential data as
speech, video, time series, etc. The individual elements of this data exhibit dependency
across time. Besides, the neural networks treat every data sample independently and
thereby suffer the loss of benefiting from the exploitation of the sequential information.
In addition, another disadvantage of the employment of neural networks is that they
are not able to handle variable length sequences. For various domains like language
translation or speech modeling, the sequences vary in length.
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For these reasons, RNNs are introduced as a type of neural networks that are suitable
for processing sequential data. In fact, this type of network processes the input sequence
one element at a time and maintains a hidden state vector that serves as a memory for
past information. RNNs learn to selectively conserve relevant information to capture
dependencies within several time steps.

The architecture of RNN is shown in figure 4.15. The RNN has a feedback connection
that connects the hidden neurons across time. At time £, it receives as input the current
sequence’s element x; as input and the s;_1 the hidden state extracted from the previous
time step. Afterwards, the hidden state is updated to s; and h; is calculated (the output
of the network). U is the weight matrix that links the input and the hidden layers similar
to a conventional neural network. The weight matrix related to the recurrent transition
is presented by W, it links a hidden state to the next. V presents the weight matrix for
hidden to the output transition.

t-1 t ht+1

h
O
VT y V y
4 W S N 541
0y —m) —0—0—0—

Unfold
U U U U

X X1 Y el

Figure 4.15: A standard RNN architecture. The left side of the figure represents a standard RNN
[157].

The RNN is trained using the back-propagation through time (BPTT) [175] in order to
learn long-range dependencies across long intervals. However, in practice training RNNs
is a difficult process [10]. In fact, training the RNN with BPTT requires back-propagating
the error gradients through several steps. According to the RNN shown in figure 4.15,
the recurrent edge has the same weight in each time step. Hence, back-propagating the
error implicates multiplying the error gradient together with the same value repeatedly.
This causes that the gradient to either decay to zero or become too large with respect
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to the layers’ number [67]. These aforementioned problems are referred to vanishing
gradients and exploding gradients respectively.

Consequently, numerous methods have been proposed to deal with the problems of
learning long-term dependencies when training RNNs as the gradient clipping method
that has proven to be effective to the exploding gradient problem [118]. Subsequently,
the LSTM network has been introduced to overcome the vanishing problem due to the
replacement of an ordinary neuron by a complex architecture entitled the LSTM unit
[68]. The LSTM network has become the popular variant of the RNNs.

454 LSTM background

The LSTM network is a special architecture of the artificial RNNs developed in 1997
by Hochreiter and Schmidhuber [68]. It has been introduced to avoid the issues that
occur when modeling long-term dependencies with RNN such as the vanishing or the
exploding gradient problems. Therefore, the LSTM network is able to learn short-time
as well as long-term dependencies. It is especially known by its effectiveness to treat
time-series data [2]. In other words, the LSTM network is able to model the temporal
changes in a series of data owing to its memory units and recurrent architecture. The
LSTM units are connected sequentially. Each LSTM cell includes its own memory with
three gates: the input, the output and the forget gates. These gates are responsible of
protecting and controlling the flow of information through the cell. Otherwise, they
decide which information has to be forgetting or reminded. These gates are detailed in
the following:

e The input gate: It can allow the incoming signal to block the state of the memory
cell or to change it.

e The output gate: It can authorize the state of the memory cell modify the other
neurons or prevent it.

e The forget gate: It can let the cell to forget or remember its previous state, as
required.
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An LSTM cell can be expressed by Equation 4.11 and illustrated in figure 4.16.

Iy = o(Wi[H;_1, X¢] + by)

F = O'(WF [Ht—ll Xt] + bF)

Or = o(Wo[H;-1, Xt] + bo)

Ct = B« Ci_1 + It x tanh(Wc[H;_1, X¢] + be)
H; = Oy * tanh(Cy)

Y; = softmax(WyH; + by)

(4.11)

where:

O X={X(1),X(2),..,.X(N)} is a an input sequence, where N is the length of the time
series sequence.

Ul It, F, O and C; are respectively the input, forget gate, the output gates and the
memory cell state.

L] Hy is the cell output and Y} is the final output.

[] tanh and o are respectively the hyperbolic tangent and the logistic sigmoid activa-
tion functions.

[J W and b are respectively the input weights associating the LSTM cell to the inputs,
and the bias vectors.

In fact, if a new input comes and the input gate I; is activated, a new information will
be added to the cell. Moreover, if the forget gate F; was activated, the past cell status C;_1
could be forgotten. The output gate O; controls either the last cell output C; propagated
into the final state H; or not. The Nonlinear sigmoid o = (1 — e~1)~! outputs values
between zero and one, zero indicates that “let nothing through,” while one means “let
everything through!”. Thus, the LSTM architecture utilizes the memory cells to use and
store information, to identify the long-range temporal relations [111].

4.5.5 Proposed UWB-based system for obstacle detection

From the one side, despite the fact that UWB reflected signal incorporates rich infor-
mation, the discrimination between the object’s signature from noise is a fundamental
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challenge. In fact, as we already mentioned that the UWB received signal () can be
modulated following Equation 4.12.

r(t) = s(t) +n(t) (4.12)

where n(t) is the noise of the transmission channel of UWB radar and s(t) is the
received echo.

Therefore, based on the UWB property that indicates that each obstacle has its own
signature, noise also should be different.

From the other side, the target’s wave reflection amplitude is generally changing over
time due to physical characteristics (material, shape, size, etc.). Otherwise, the received
echo is a function of time, and also a function of the obstacle distance from the sensor.
This time-distance relation is expressed by Equation 4.1.

Hence, on account of the temporal changes presented in the UWB signal we adopt
the idea of employing LSTM network. This choice is made on account of the fact that
this type of RNN is able to recognize and synthesize the dynamics variations within the
UWRB received echo. Thereby, in this work we propose the first framework that exploits
LSTM network with UWB signals for distinguishing obstacles from noise in a vehicle
environment perception context.

The proposed framework is explained in Algorithm 2 and illustrated in figure 4.17.
Primarily, the received echo is split into time series sequences [x;]. These sequences
present the useful regions which contain the real targets (illustrated by the orange win-
dows in figure 4.17) and noise partitions (depicted by green rectangles in figure 4.17).
For data variety, the noise parts are randomly selected from the UWB signal. In fact,
the window’s size (Wsig) is empirically set according to the objects’ signature length.
Afterwards, features from the time-frequency domain are extracted from the defined re-
gions. Thus, the discrete wavelet transform (DWT) is utilized. We extract four features
from the approximation coefficients (Ca) and the detail ones (Cd) for each sequence.
Subsequently, the fattened 1D descriptor vector feeds the LSTM network. Finally, the
output of the LSTM is linked to the fully connected layer of size two followed by a
Softmax layer, and a classification layer.

To conclude, the proposed detector analyzes the temporal changes within the UWB
signal via learning the extracted time-frequency features that highly present the signal
characteristics.
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Algorithmus 2 : LSTM-based algorithm for obstacle detection using UWB
signals

= < =
AW N =D

Data : Received signal r = [ry], Signature window length: Wsig ; Lstmopions ;
Position: pos

Output : Class

// Split time series sequence

for t <— pos to length(Wsig) do

| x¢ = r(pos, t + pos);

end for

// Extract features using Discrete wavelet transform

Foector = ]

[Ca, Cd] = DWT(x¢)

F1 = mean(Ca); F2 = std(Ca); F3 = min(Cd); F4 = rms(Cd)

Fvector = append(Fvector, F1, F2, F3, F4)

// Feed the LSTM-based network

Outputy,, = Lstm(Fovector, Lstmopions)

OutputFCL = Fullyconnectedlayer(Output g, )

Class = Softmax(OutputFCL)

return (Class)
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4.5.6 Experimental setup

To highlight the efficiency of the proposed architecture, we compare it to the implemented
state-of-the art techniques: CFAR, HOS and the work in [141]. The experimental results
are evaluated using the P, R and the F1-score metrics.

The details of the implementation are illustrated below:

Network architecture : We exploit the unidirectional network with 100 LSTM
hidden units. The number of epochs and mini batch size during experiments are
set to 100 and 64 instances respectively

Feature extraction : To extract features using the discrete wavelet transform,
the Daubechies wavelet is employed to extract the features from the time series
sequences.

Dataset : We conducted our experiments on a variety of the OLIMP urban driving
scenarios.

Training : For our experiments, we use 2/3 of the data for training step and 1/3
for the test process following the OLIMP protocol.

Moreover, we utilized the Adam Optimizer [14]. The initial learning rate is set to
0.001.

Comparative techniques : For HOS we take advantage of the 4" order cumu-
lant that relies on Tuganit4 algorithm. Concerning CFAR, CA-CFAR detector is
considered with automatic threshold. These techniques are already explained in
Section 4.4.4.

It shall be mentioned that for training process, The optimal set of parameters has been
selected based on preliminary tests.

4.57 Results

The experimental results concerning the comparative study are summarized in figure
4.18. In fact, it can be seen from the figure that the obtained results show that our
deep learning-based method achieves the highest performance. Our proposed method
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outperforms significantly the considered traditional detectors particularly in terms of
recall and precision.

HOS
mmm CFAR
100 HOS_CFAR
mmm Proposed Method

80

72.78 71.34 72.06
70.74 67.46 3
61.58
< 60
s 49.64
39.27 38 39.46
40 31.72
12 29.03
20
0
Precision Recall F1-score

Evaluation Metrics

Figure 4.18: Experimental results using HOS, CFAR, the work in [141] and our method

The performance of CA-CFAR, HOS and their combination in the work of [141]
depend essentially on the definition of the threshold parameter. A higher threshold
generates more false negatives, however, the opposite case produces additional false
positives. Furthermore, the object detection rate using the aforementioned techniques
rely on the object’s amplitude. In low magnitude cases, which means that the object is
moving away from the radar, the target can’t be detected and it is considered as noise.

The LSTM-based method can distinguish noise from real targets thanks to the relevant
features that are extracted from the time-frequency domain, and by learning the temporal
relationship between the data sequences. In fact, the time-frequency features lead to
a high-performing as they can represent well the signal’s characteristics. It shall be
mentioned that, some missclassifications are still present due the challenges related to
the interclass similarity of the obstacle’s signature and the noise signal in cases where
the object’s signature has a low amplitude.

In terms of complexity, table 4.4 depicts a comparison of the execution time of our
method with the state-of-the-art techniques. As it can be seen from the results, our
architecture has the highest execution time, though, advanced hardware resources are to
be deployed to acquire faster detection time.



4.6 DISCUSSION

Table 4.4: Execution time results
HOS | CA-CFAR | [141] | Proposed method
Execution time (s) | 1.34 1.41 1.52 2.01

4.6 DISCUSSION

In this chapter, we tackled the problem of differentiating real objects from noise for
the environment perception purpose using UWB radar. For this purpose, we proposed
to explore an entropy-based method and a deep-based framework. We compared the
proposed approaches to the well-known techniques HOS, CA-CFAR and [141] and
experiments were conducted on our previously developed dataset OLIMP.

Even though the main aim is to discriminate the useful portions within the signal from
noise and to detect the obstacle, the two proposed detectors treat the dilemma differently.
On the one hand, the entropy-based method exploits the signal’s complexity instead of
the amplitude which the state-of-the art techniques rely on it. This leads us to prove that
our entropy-detector remains robust even with lower amplitude cases. As a future work,
it should be pointed out that an adaptive thresholding could be considered in our case.

On the other hand, the LSTM-based detector aims to localise the real obstacles
by learning and synthesizing the temporal variations within the UWB received data
sequences. This detector achieves higher results in terms of recall, but not in terms of
precision compared to our proposed entropy-based detector. In terms of complexity, the
execution time of the entropy-based method is faster to detect the obstacles compared with
the LSTM-based as it is a time consuming (deep-based method) and all the implemented
methods.

While the LSTM-based network has proven to be particularly powerful to solve noise
and real target distinguishing problems, the entropy characterises the UWB signal, there-
fore, a hybrid approach that combines these methods could be interesting to compensate
their limitations and obtain a better detector.

47 CONCLUSION

In this chapter, we focused on the segmentation of 1D UWB signals. Thus, we reviewed
the existing methods to detect obstacle using UWB radar. Afterwards, we proposed an
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entropy-based detector based on a theoretical study related to the Shannon entropy. A
comparative study has been conducted to evaluate our entropy method by employing
HOS, CA-CFAR and [141] techniques. In addition, as a deep-based method, we pro-
posed the first framework that exploits LSTM network to distinguish real target from
noise using UWB radar.

According to the obtained results that surpass the state-of-the-art techniques, the pro-
posed systems constitute an important step towards distinguishing real obstacles from
noise. As future work, we believe that an adaptive hybrid segmentation technique could
be interesting and may achieve high detection performance.
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CONCLUSIONS AND PERSPECTIVES

5.0.1 Conclusions and contributions

Environment perception is one of the key challenges in automated driving applications
especially in the quest for higher degrees of automation. These systems represent the
the forthcoming of transportation. In fact, early ADASs have been developed and im-
proved over many generations thanks to the better performance of the sensors and their
enhancement of processing algorithms. In the recent years, sensor data fusion becomes
a key aspect in developing such systems to describe the complete vehicle environment
optimally and efficiently. Therefore, since the level of automation increases and ADASs
become complicated, reliable environment perception is required. Moreover, developing
accurate and reliable systems will always be addressed particularly for next-generation
automated systems as they guarantee safety.

To address this challenge, in this thesis, we have focused on environment perception.
Particularly, we have tackled the problem of detecting multiple objects using data fusion
or a unique sensor. This thesis integrates four principal contributions.

Firstly, we have reviewed the environment perception state-of-the-art for intelligent
and autonomous vehicles, specifically the object detection task which includes the rel-
evant sensors, the data fusion methods and the challenges. Afterwards, by reviewing
the existing public multi-modal environment perception databases, we have introduced
OLIMP dataset. It is the first synchronized dataset that includes these four modalities:
images, UWB radar signals, narrow band data streams and acoustic data.

We have also presented a new fusion framework that combines data acquired from
different sensors used in our dataset to achieve better performances for the obstacle
detection task. Various levels of fusion are exploited and promising results are found.
These results undoubtedly allow us to conclude that multimodality is indeed to guarantee
an accurate environment perception.

Afterwards, we have tackled the problem of multi-obstacle detection in short-range
settings using the UWB radar as it provides rich information about the vehicle’s sur-
roundings. Thus, two detectors are proposed.

The first detector is an entropy-based segmentation approach. It exploits the signal
entropy instead of the amplitude to localize the useful UWB parts. Based on exhaustive
experiments and a comparative study with the state-of-the-art techniques our method
remains robust even with challenging low amplitude signals. Furthermore, our detector’s
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performance is improved when the obstacle is far from the sensor. This observation
overcomes the fundamental challenge in related techniques.

The second detector is a deep learning-based framework. It is the first framework that
exploits LSTM with UWB signals for multi obstacle detection in an outdoor complex
environment. By learning the temporal dependencies within UWB series of data, the
LSTM-based detector outperforms the conventional techniques.

Finally, based on the aforementioned contributions made in this thesis dealing with
the problem of object detection, we conclude that for sensor data fusion architectures
there is not a dominant level of fusion. In fact, it depends particularly on the targeted
ADAS applications, the employed sensors and the environment. In addition, in urban
environments, the environment perception task is more challenging as they are very
dense and it is difficult to separate objects near each other.

5.0.2  Perspectives

Despite these advances made through our contributions, the complete environment
perception remains an open topic of research and several improvements can be envisaged.
principal limitations to be considered and the perspectives are presented as follows.

e Sensor fusion

The proposed fusion framework have shown that data fusion at different levels
offer a higher performance than employing a unique sensor. The proposed fusion
framework is limited because of its sequential aspect. We believe that this could
be improved using advanced parallel fusion systems. This will be investigated in
future work.

Despite the fact that the suggested fusion detection method deals with the limita-
tions of each modality, only the detection of false positives is considered. Incor-
porating the cases of false negatives in the fusion framework can be explored as
future work to obtain a more reliable object detection system.

Furthermore, the development of a new deep learning-based architecture that fuses
narrow-band data streams and images is our current field of research.

e Entropy-based detector
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The entropy-based segmentation method for UWB radar signals exploits the signal
entropy. It relies on the detection of a threshold that allows the distinction of useful
signals from noise. It should be pointed out that adaptive thresholding could be
considered in our case.

Even with a low amplitude, the entropy-based method can differentiate between
noise and real targets. However, we believe that an adaptive hybrid segmentation
technique could be interesting and may achieve a high detection performance.

LSTM-based detector

We have shown that analyzing the temporal data changes among UWB signals
for the object detection process provide higher performances by exploiting RNNss.
Promising results are found using the LSTM-based detector which outperforms
the performances of the related techniques. It shall be mentioned that some miss-
classifications are still present. Accordingly, further research can be expanded to
extract deep features to tackle this dilemma. For this reason, the employment of
CNNss to extract features from the UWB signals can be investigated.

From another perspective, an hybrid approach that combines the entropy-based
detector and the LSTM one could be interesting to compensate limitations and
obtain a better detector.
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