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Résumé

La cognition incarnée est fondée sur le fait que notre système cognitif n’est pas seulement
connecté au corps, mais qu’il sert aussi de mode de communication du corps l’ environnement.
Le cerveau vivant et actif, qui interagit avec l’environnement à travers notre corps vivant,
a un impact majeur sur notre pensée, en particulier sur ses processus et mécanismes. Cela
signifie que nos expressions communicatives comprennent les composantes corporelles de
nos systèmes de capture sensorielle et les composantes émotionnelles qui sont liées à notre
sensorimotricité et à la réalisation de nos séquences d’actions planifiées. A partir de ce
cadre théorique, nos recherches ont eu pour but de tester l’hypothèse que les capacités
cognitives humaines telles que le raisonnement, la résolution de problèmes accompagnée
de l’apprentissage de phrases peuvent être impactées par notre gestuelle corporelle. Pour
atteindre cet objectif de recherche, nous avons recueilli et analysé les données de résolution de
problème en considérant le Deep Learning et l’apprentissage associatif comme modèles pour
la cognition incarnée. Les données sont celles d’expériences menées auprès de participants
aveugles et de participants voyants qui ont comme tâche la résolution du problème de la tour
de Hanoi ; l’objectif étant d’examiner comment la résolution de problèmes peut être capturée
en termes de cognition incarnée. L’intérêt pour l’intelligence artificielle, qui pourrait ainsi
modéliser et mettre en œuvre les capacités cognitives humaines, a également été un point
important de nos recherches. Dans un second temps, les données expérimentales ont été
utilisées pour instancier et simuler des modèles cognitifs à l’aide de réseaux de neurones et
d’apprentissage par renforcement. En déduisant la corrélation entre deux actions successives,
nous avons implanté un raisonnement probabiliste associé à un modèle associatif cognitif
pour générer l’action suivante. En particulier, nous avons conçu un modèle de réseau neuronal
récurrent de résolution du problème de la tour de Hanoi à partir du traitement et de l’analyse
d’images des actions consécutives réalisées par les participants. Enfin, nous avons essayé de
modéliser les verbalisations des participants en les mappant au processus d’apprentissage
récurrent du réseau neuronal basé sur la classification par étiquettes multiples. Il s’agit d’un
prototype du modèle d’expressions langagières reflétant la planification et la réalisation du
geste cognitif incarné qui pourrait accompagner l’apprentissage à partir des objets et de
leurs relations. À travers cela, nous avons exploré comment reconnaître les objets et leur



transformation dans l’environnement par le geste corporel et associer les expressions verbales
à ce processus d’apprentissage.

Mots-clés: Cognition incarnée, Tour de Hanoi, Apprentissage automatique, Réseau neu-
ronal convolutif, Intelligence artificielle, Résolution de problèmes, Développement cognitif,
intelligence sensori-motrice

vi



Abstract

The idea of embodied cognition is based on the fact that our brain is not only a living organ
which is connected to our body, but also the mode that the body communicates with our
environment. The alive and active brain, which interacts with the environment through
our living body, has a major impact on our thinking, especially cognitive thinking. This
means that our communicative expressions are composed of bodily component following our
sensor-motor systems and emotional components which concerns realization of our sensor-
motor actions and of planned actions. Therefore, our research attempted to test the hypothesis
that human cognitive abilities such as reasoning, problem solving accompanied by sentences
learning can be deeply impacted by our body gesture. To achieve this research purpose, we
have analyzed and explored embodied cognition, deep learning, and reinforcement learning,
which are the theoretical backgrounds of the thesis. And then, we conducted experiments
with blind and sighted participants to actually solve the Tower of Hanoi problem. The purpose
of this study was to examine how problem solving can be captured in terms of embodied
cognition. Interest in artificial intelligence, which can model and implement human cognitive
abilities, was also the important point of our research.

Therefore, all these experimental data were then used to train and simulate cognitive
models using neural networks and reinforcement learning. By inferring the correlation
between two successive actions, we made a probabilistic reasoning and cognitive associative
model to find the next behavior. In particular, we designed a Recurrent Neural Network
model and solved the Tower of Hanoi problem with the help of analysis of consecutive
images. Finally, we tried to understand natural language by mapping learning sentences to
Recurrent Neural Network learning process based on multiple label classification. This is a
prototype of the embodied cognitive language model that can learn natural language from
objects and their relationships. Through this, we explored how to recognize things from the
environment and develop them into language learning.

Keywords: embodied cognition, Tower of Hanoi, Machine learning, Convolutional Neural
Network, Artificial Intelligence, Problem solving, Cognitive development, sensorimotor
intelligence
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Chapter 1

Introduction

1.1 Introduction

Many scientists have sought to explain physically the phenomena and the workings of the
mind in humans. With the advent and development of information technology, we have been
using this information technology to study the mind, especially to realize human cognitive
abilities. In recent years, computers are replacing people when it comes to intelligent work.
Information technology learns the search patterns of computer users and presents possible
search results in advance. In addition, information technology recognizes human voices
and attempts to communicate with humans or strengthens the security system through facial
recognition. The basis of all these user convenience and technological advances is the
breakthrough in artificial intelligence technology. From a technical engineering point of view,
the work of modern artificial intelligence can be the concept of weak artificial intelligence
that helps people work. However, recently, a model for human intelligence has been proposed
beyond this simple technical aspect. Therefore, the starting point of our research began with
an interest in artificial intelligence that can imitate and implement human cognitive abilities.
So our research began by asking the question of how on earth are human intelligence and
cognitive ability formed ?

We send messages of love to our children. We laugh at the children, give them a warm
touch, and give them an angry expression when they do something wrong. Before children
know the word love, they understand the meaning through visual information and actions
of parents. We also say that while looking at the fluctuations of the stock market, prices
rise and fall like a seesaw game. There is currently a video coming into our minds. This is
an example of knowing that information of play from childhood experiences reconstructs
their meanings through language. Therefore, we have been paying attention to the embodied
cognitive theory that is receiving new attention in psychology. It is the theory that human
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cognitive processes and decisions are influenced by sensory movements such as touch and
smell experienced in daily life. The purpose of our study is to realize human cognitive ability
based on embodied cognition. We used artificial intelligence to analyze information received
through sensorimotor organs. Since then, we have tried to implement artificial intelligence
that can infer and judge based on the analyzed data, furthermore, can learn sentences. Our
study attempted to verify the hypothesis that human language recognition and cognitive
ability, such as sentence learning and reasoning, are possible by a lot of information received
through our sensory motors. In the future, our research will expand further through the
combination of robot and artificial intelligence as a tool for acquiring information through
sensory movements such as tactile and visual.

1.2 Thesis organization

To achieve this research purpose, in Chapters 2 to 4, we have analyzed and explored embodied
cognition, deep learning, and reinforcement learning, which are the theoretical backgrounds
of the thesis. In Chapter 5, we conducted experiments with the blind and the sighted
participants to actually solve the Tower of Hanoi problem. The purpose of this study was
to examine how subjects approach problem solving in terms of embodied cognition. In
particular, in order to find out how the gesture affects cognition in the problem-solving
process, we first asked to solve the Tower of Hanoi Puzzle with four disks and secondly to
solve the problem without any disk. In this case, however, the subject explained the solution
process to the supervisor.

All these experimental data were used to simulate cognitive models using neural networks
and reinforcement learning. The purpose of the simulation of this cognitive model is to
develop an embodied cognitive model similar to humans after observing the subject’s problem
solving process. Subjects constantly observe and interact with surrounding objects (disc,
pillars, etc.) during the Hanoi Tower problem solving process. Subject tries to infer problem
solving using gestures or touching objects. We simulated this diverse rapport and reasoning
process using various deep learning technologies.

In Chapter 6, the traditional multilayer perceptron was first simulated with a three-disk
Hanoi tower problem. We then modeled if the Hanoi Tower problem with four disks could
be solved through inference without learning the data. We understand the rules of the game
that you should put small disks on a large disk one at a time, and know the rules for moving
disks on the left side to the right side in the shortest time. Therefore, since we know the rules,
it is possible to solve problems with 4 or 5 disks. Of course, it will take a lot of trial and error
to solve the optimal solution. However, in Chapter 6, we simulated how to solve four disks
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without learning data about four disks using inference model. We have deduced the solution
using a probabilistic reasoning model via deep learning. This is a model of inference based
on the data learned from the relationship between objects.

In Chapter 7, we focused on a series of data on problem solving. Therefore, based on this
series of data, we designed the Recurrent Neural Network model and solved the Hanoi Tower
problem. However, if most of the data did not provide the shortest path, the Recurrent Neural
Network model had the problem that it could never find the shortest path. This is because the
number with the greatest probability is suggested. Therefore, in order to solve this problem,
the model was modified and simulated to find the shortest path by applying reinforcement
learning theory.

We coded a series of data on the whole process of problem solving in Chapter 7. For
example, if the disk was moved from left to center, G1 was coded, and if it was moved
from center to right, G2 was coded. Therefore, using this method, each movement was
coded. On the other hand, in Chapter 8, we recorded a video of the subject’s problem-solving
process and divided the video into consecutive images. Each image was classified into
multiple labels. Based on the classification of multiple labels, we designed an RNN model
and performed simulations. By inferring the correlation between two successive images,
we made a cognitive model to infer the next behavior. Finally, Chapter 9 can be seen as
an extension of Chapter 8. We tried to understand natural language by mapping learning
sentences to RNN learning process based on multiple label classification. It is a prototype
of the embodied cognitive language model that can learn natural language from objects and
their relationships. Through this, we explored how to recognize things from the environment
and develop them into language learning.
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Chapter 2

Embodied cognition and Artificial
Intelligence

2.1 Introduction

Embodied Cognition is a theory of cognitive science stating that people’s cognitive pro-
cesses and decisions are influenced by sensory movements such as touch and smell that are
experienced in everyday life. In other words, human thinks not only with the brain, but
also with a body with sensory motor skills. According to a research paper, "Experiencing
Physical Warmth Promotes Interpersonal Warmth", by psychologist John Bargh at Yale
University( Williams and Bargh [141]), if someone is holding a hot cup of coffee, he/she
tends to judge other people to be more generous and caring people than others who are
holding a cold cup of coffee. He concludes that people holding a hot cup of coffee evaluated
strangers as warm-hearted, kind and sensitive people whereas people holding a cold cup of
coffee showed a tendency of looking at strangers as uncomfortable to approach and silent
people. As this indicates, physical touch affects making decisions unconsciously.

In the From the play “Macbeth” by William Shakespeare, Lady Macbeth conspires
with her husband to kill the king. After committing the murder, she mutters, rubbing her
hand."Out, out, damn spot". Even though there was no blood on her hands, she would have
thought that washing her hands would wash away her guilt. This is the so-called effect of
Lady Macbeth.

Let us take another example. "Parasite", which won the Palme d’Or at the 2019 Cannes
Film Festival, deals with the theme of smell. The boss of a company with a lot of wealth has
a discreet conversation with his wife. He says that their chauffeur smells unpleasant, like the
people with lower social status. In this film, the director differentiates people by associating
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smell with social class. The film was looking for the problem of class from smell. The mind
is affected by the body and the sensory organs to understand abstract concepts such as social
problems and ethics.

Recently, psychology is receiving a new interest in embodied cognitive theory. According
to Descartes, cognitive processes take place within individuals isolated from the outside
world. And because of this, the representation that has meaning is seen as the essence of
the mind. Contrary to the Descartes’s point of view, recent psychology states that primary
intelligence developed based on the behavior of the body, and then intelligence developed
into abstract concepts and languages in the course of evolution. The embodied cognitive
approach has rediscovered sensory mechanisms, the importance of the environment, and the
relationship between cognition and the environment. So embodied cognition appeals to the
idea that cognition depends not only on the agent’s body, but also on the surrounding.

In the 17th century, Spinoza explains that the body and mind are not separate existence
but are the same reality but contain two very different aspects. Nietzsche rejects the mental
superiority over the body in the philosophy of life (Lebensphilosophie). Later, through
Heidegger, through the French philosopher Merleau-Ponty, the phenomenological stance
on the body and mind is clearly declared. Finally, epistemological thinking about the body
begins to appear. The paradigm of cognitive science called embodied cognition has brought
about a second cognitive revolution since the 1980s. Embodied cognition can be said to be
an attempt to unravel the human cognitive process not only through the human body as a
biological object, but also through the brain. In addition, embodied cognition is not limited
to cognitive science but expands to the paradigm with artificial intelligence. It is a challenge
as an embodied artificial intelligence to interact with the environment, and humans acting
autonomously through sensors in the real world.

This chapter will examine the emergence of cognitive science and embodied theory called
the cognitive science revolution of the 20th century as well as the theoretical background
related to embodied cognition. In addition, along with the rapid development of artificial
intelligence in recent years, we will examine how embodied perception will change the
paradigm of artificial intelligence.
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2.2 The new challenge of cognitive science

2.2.1 Cognitive revolution and Emergence of embodied cognition the-
ory

In the end of the 1950s, psychology attempts to reconstruct the natural notion of mind. As an
attempt to reintroduce empirical research and to introduce a new approach, it is considered a
paradigm shift that has been approached in a new conceptual framework of philosophy of
mind that has been dealt with in philosophical traditions for a long time. We call this attempt
a cognitive revolution which is considered as the scientific revolution of the 20th century.

By this cognitive shift of the 1950s, the mind’s operation was recognized as the same as
that of computer information processing. Thus, the mind’s work, which was excluded from
previous cognitive behaviorism, emerges as a scientific research subjects. The mind was
viewed as a calculable object. We looked at the human brain as the hardware of a computer
and looked at the human mind as software.

Early cognitive science focused on human cognitive function. Cognition is a recurring
mental process in which a person perceives stimuli and information, encodes them in various
formats, stores them in memory, and later reproduces them. Therefore, because of the com-
plex cognitive function, cognitive science requires cooperation between the interdisciplinary
disciplines such as philosophy, psychology, linguistics, anthropology, neuroscience, and
artificial intelligence. In addition, cognitive science presupposes the mind as a sign system,
so the mind manipulates signs in various cognitive processes such as thinking, perception,
and memory. The process by which the mind manipulates symbols is called calculation. The
goal of cognitive science, therefore, is to uncover computational theories that explain how
the mind works. The method of studying the mind is divided into top-down and bottom-up
methods. Top-down sees the whole as determining parts, while bottom-up sees the actions
of parts as determining the whole. In the case of cognitive science, if the cognitive activity
performed by the brain corresponds to the upper level, the electrochemical phenomenon
occurring inside the nervous system of the brain falls into the lower part.

It was divided into a cognitive psychology of a top-down approach but since the 1980s, a
neuroscience of a bottom-up approach has been paid attention. In the early days of cognitive
science, the role of the body in information processing was not so essential. In order to
transmit information to the brain, the body was considered as just an input and output device.
But in the late 1980s, embodied cognitive theory emerged that the senses and actions of the
body affect the cognitive function of the mind.
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2.2.2 Cognitive research based on Embodied cognition

At the beginning of the 20th century, positivism and psychology were rampant. Positivism
regarded the objectivity of natural science as omnipotent, and psychology tended to stick
to human subjective experience. Husserl questioned the dichotomy itself to distinguish
objectivity and subjectivity. Husserl draws on the term ’intentionalität’. Intentionality means
that our consciousness always means ’consciousness about what’. The notion of ’Orientation
of consciousness’ is only possible in relation to the object.

Merleau-Ponty, succeeding Edmund Husserl’s theory, studied existential phenomenology.
Merleau-Ponty rejected dualistic divisions of subjectivity and objectivity, nature and spirit.
For him, human beings are physical beings and rooted in the world through the body. He
says that the world is the natural background and environment of all my thoughts and all my
obvious perceptions (1945; Phenomenology of Perception). Mind and body are not two, but
one. It suggests that human language and thought are embodied through the body.

Descartes doubted and doubted everything in order to gain self-evident truth (or axiom).
For Descartes, the starting point of philosophy had to be clear and certain. Descartes used
methodological skepticism to reach certainty

"I have a complete understanding of what a body is when I think that it is merely
something having extension, shape and motion, and I deny that it has anything
which belongs to the nature of a mind. Conversely, I understand the mind to be a
complete thing, which doubts, understandings, wills, and so on, even though I
deny that it has any of the attributes which are contained in the idea of a body.
This would be quite impossible if there were not a real distinction between the
mind and the body. (Descartes 1641/1984, 86)"

Johnson and Lakoff in their book ’Philosophy in the Flesh’ insist on embodied cognitive
theory based on Experientialism. The argument is based on the theory that 1) the mind is
inherently incarnated, 2) human thinking is almost unconscious, and 3) human thinking has
a metaphoric nature. The physical experience, in particular the mind is constituted by the
sensory-motor experience and is a natural metaphorical thinking based on the body. Thus, as
mentioned in representationalism or classical cognitivism, the ‘Multiple Realizability Thesis’
that claims to be feasible on a computer is not an appropriate approach to mind research
( Lakoff and Johnson [75]).

Embodied cognitive theory not only extends the scope of cognitive processes that were
confined to the brain to the body, but also extends cognition from the human body to the
environment and world in which humans live.
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This theory considers the cognitive process to be done by the environment, that is, it
depends on the environment. Wilson’s work, which characterizes embodied cognition, is
frequently cited to understand the environment and the situation. Wilson defines six aspects
of embodied cognition ( Wilson [143]) :

1. Cognition is situated.

2. Cognition is time pressured.

3. We off-load cognitive work onto the environment.

4. The environment is part of the cognitive system.

5. Cognition is for action.

6. Off-line cognition is body based.

In order to understand the concept of environment and situation in embodied cognition,
we need to check the claims from 1 to 4. Claim 3 reveals the role of the environment in the
context of cognitive work. It means that our cognitive burden is distributed to the environment
when we do cognitive tasks in the current situation. In claim 4 suggests that the cognitive
system extends not only to the brain and body but also to the environment. The claims 1 and
2 emphasize that cognition occurs in any time under certain circumstances.

Wilson says in claim 1, that situated cognition is cognition that takes place in the context
of task-relevant inputs and outputs. In addition, claim 2 means that the time pressure is
the cognitive agents must cope with the constraints of "real-time" or "runtime". This is a
criticism of the classical Artificial Intelligent model, which underestimates the constraints
on a cognitive context and assumes a cognitive model that forms and manipulates internal
representations of situations with time.

Wilson says, "Cognitive activity takes place in the context of a real-world environment,
and it inherently involved perception and action". Situated cognition seems to be regarded as
perceptions in which perception and action are inherently involved in the context of a real
world environment.

2.3 Four aspects of embodied cognition theory

Rowlands describes four main types of embodied cognition (Embodied cognition, Embedded
cognition, Enactive cognition, and extended cognition) based on embodiment ( Rowlands
[125]). The embodied cognitive theory not only extends the scope of cognitive processes
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that were confined to the brain to the body, but also extends cognition from the human body
to the environment and the world in which humans live. More specifically, let’s look at the
classification of embodied cognition.

2.3.1 Embodied cognition

Embodied cognitive theory is a theory that studies the mind embodied in the body ( Lakoff and
Johnson [75]). Early cognitive science studied the human mind based on representationalism
and computationalism. Thus, the study basically followed the de-embodied point of view.
Cognitive scientists believe that human thinking can be sustained by the signaling system
that is transmitted to the brain due to the fact that the body does not have a hard time thinking
even when the body is incomplete. He thought that if there is a brain without a body, human
thinking can be maintained. More specifically, let us take an example of brain-in-the-vat
thinking experiment (Figure 2.1).

Fig. 2.1 A brain in a vat that believes it is walking.
(source: https://extimatrix.wordpress.com/brain-in-a-vat-2/)

Let us suppose a neuroscientist separates a brain from someone’s body and keeps it
separate. And suppose you’ve made a vat that connects neurons to wires and receives all the
signals that humans have received. The question ’I am the brain in the vat?’ presupposes
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that I am not the brain in the vat ( Putnam [117]). Indeed, the brain in the vat only receives
signals, not having any self-consciousness of who it is.

However, embodied cognitivists pay more attention to the meaning of vat in this thought
experiment. Specifically, the prerequisites required for embodied cognitivists are as follows.
First, the brain is alive and working well, and secondly, all epibiotic stimuli are replicated,
and thirdly, all endotrophic self-organization activities are maintained without problems. In
embodied cognitive scientists, the minimum sufficient condition to enable consciousness is
that the entire body including the brain, must be involved. The brain is a body organ, but it
cannot be an organism. The organism has to make a conscious approach to the world.

This vat is understood as a kind of substitute body because it satisfies the body’s attributes
and functions. The embodied cognitive theory thus argues that it is certain that our cognitive
experiences are formed or constructed by the somatized brain, whether or not the brain in
vat is actually possible. Zajac suggests that body movement is not entirely determined at
the level of the brain but rather is reorganized by the design and flexibility of muscles and
tendons, relationships with other muscles and joints, and previously activated memories
( Zajac [147]).

2.3.2 Embedded Cognition

Embedded cognition sees that the source of cognitive process is rooted from the environment
and world rather than human subject ( Beer [13], Rowlands [125], Uexküll [138]). It is a
more radical theory of four embodied cognitive theories.

Suppose you asked people how to get to the Louvre museum. Some people use Google
Maps and others will ask for help from the people around them. People solve problems in
ways that are appropriate for them in a given situation. Embedded cognition emphasizes that
human intellectual activity depends not only on the individual’s cognitive representation but
also on the clues of tools and environments, and on interactions with people ( Clancey [29]).

When looking at something, our sensory information does not accurately interpret visual
information. This problem is called the problem of under-determination. To solve this
problem, cognitive scientists introduced the unconscious inference method. The hypothesis
of this method is that if we use perception as a cognition and use existing knowledge, the
ambiguity inherent in the input sensory stimulus is resolved. The mental model completed
through unconscious inference is the basis for planning and taking action. This reasoning
soon becomes an idea and is placed between the senses and the actions ( Hurley [63]).

However, in the theory of embodied cognition, the sensory-thinking-action cycle is
replaced by the cycle of sensory-action. In the cycle of sensory-thinking-action, an agent
passively accepts information. But in the cycle of sensory-action, the agent constantly
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explores the world and actively receives information ( Clark [30], Brooks [21], Pfeifer and
Scheier [110]).

For example, not only bats can detect moving objects during rapid flight in tight spaces,
but also they can respond to changes in their position in seconds, due to interactions in
dynamic environments.

Agents change the world through actions, and this changed world actively responds to
the environment through feedback that affect the future of the agent ( Beer [13], Clancey
[29], Pylyshyn [118]). Gibson proposes the ecological theory of perception, suggesting that
the purpose of perception is to produce affordance ( Bornstein and Gibson [17]). Affordance
affects the characteristics of the agent’s body to produce an unique response, which means that
it is important to consider the characteristics of the body to comprehend context-dependent
echo information. Uexkull, on the other hand, created the term ’Umwel( From the german
Umwelt meaning environment or surroundings)’ to represent the original way in which
individuals relate to the world through perception ( Uexküll [138]) .

To describe Umwelt, you must describe both the world and the characteristics of the agent.
As mentioned above, feedback depends on the characteristics of the body. Therefore the
body of the agent constrains the environmental world that it experiences and the affordance
as a way of reacting to the world. The greater the degree of embodied, the more feedback the
body receives, and the size of embodied depends on how much the environment can change .

Conventional cognitive science has assumed that the mechanism for controlling behavior
is within human beings, but in embedded cognition, the mechanism that underlies behavior is
derived from the outside ( Dawson [38]). Approached cognitive theory sees that the root of
human cognitive process is planted in the environment and world rather than human beings.

2.3.3 Enactive Cognition

The word "enaction" means to perform or carry out an action. The fact that cognition was
enacted shows that cognition is formed through the interaction between the organism and the
environment. It means that cognition actively creates experiences through the brain’s neural
processes. If we use the term embodied as radically as possible, we can see that cognition is
constitutively dependent on our living body. Based on the creation behavior approach, the
living body is understood as an autonomous system ( Varela et al. [139]).

The key features in this theory are the body and autonomy. One of the fundamental
characteristics of the living body is self-individuation which allows the body to distinguish
itself from the surroundings through the individualization process. In other words, self-
generation or autopoiesis (self-production) maintains self through structural and functional
endless changes of self-individuation. The enactive cognitive theory focuses on how the body
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self-individualizes in this way. It is distinguished from other embodied cognitive theories in
that it emphasizes autonomy. Autonomy here is based on maturana and Varela’s theory of
self-generation ( Maturana and Varela [83]). This concept is called autopoietic enactivism
( Campbell [22]).

Self-generation is a special aspect of living organism tissue. In other words, living
organisms interrelate with each other during the ongoing process of exchanging energy with
the world, the process of complete internal change of metabolism and metabolic processes. In
spite of any possible variations, the same organization is constantly being recreated through
their own activities. Living cells are an example of an operationally closed network ( Di Paolo
and Thompson [39]).

A closed, incomplete and endangered operating system makes itself possible. This is in
part to support oneself through the activities of his own construction process. Moreover, in
this process the system naturally decays. The system, in spite of its natural inclination, needs
fundamentally restless energy, matter, and relations with the outside world to sustain itself.

Enactive cognition emphasizes the dynamic interaction between the organism and the
environment above all else. It is argued that through this process cognition is formed and
finally manifested as action. Thus, the theory of self-generation produced by Varela et al.
Does not limit the concept of an organism to humans but to animals and even bacteria. To
some extent, depending on the species, they emphasize that they create meaning through
interactions with the environment in which they are communicating and situated in.

2.3.4 Extended cognition

In extended cognition the agent’s mind is neither skull-bounded nor body-bounded. Rather,
it is extended into the world in which the actor lies and lives. The extended cognitive theory
goes a step further in asserting that cognitive and environmental processes lie in causal
dependency relations. It is assumed that cognitive processes lie in constitutive dependency
relations with brain, body, and environmental processes. That is to say, in this theory, the
cognitive process is placed in the realized proceeding not only by the brain but also by the
rest of the body and the world ( Clark [31],J Chalmers [65]).

Clark and Chalmers present cognitive equivalence arguments and coupling arguments
as the basis for extended cognitive theory. Cognitive equivalence arguments suggest that
cognition expands when processes in the brain, body, and world are very similar to processes
in the brain. The coupling arguments insist that human cognitive processes can be realized
by the processes of the brain, body and the world, provided that the two processes, physical
or environmental processes and cognitive processes, are causally and correctly connected.
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Cognitive Equivalence arguments

Inga-Otto thought experiments are a good example of explaining cognitive equivalence
arguments. Today, Inga and Otto receives a news of art exhibition taking place at The Grand
Palais des Champs-Élysées. Inga left right away because she remembered the location of
the museum. Otto, on the other hand, has early stages of Alzheimer’s disease. So he always
recorded information on his computer in order to don’t forget something. Otto moved to
the showroom after checking the information from the computer. In both cases, the only
difference is whether the information is recorded in the brain or on the hard disk. The
essential causal dynamics relations between two pieces of information are exactly the same.

Certainly, Inga’s information(Brainy) contains non-derived and original contents, while
Otto’s information(documentary) contains derived and unoriginal content. Therefore, they
are criticized for not being equal. Derived contents come from social practices such as red
traffic lights and white flags. It is therefore argued that it is not important to distinguish
between derivatives in the cognitive state.

Furthermore, we will look at two types of memory: the phenomenon of negative transfer
and the generation effect. In the first phase of the phenomenon of negative transfer, subjects
see a pair, such as the name of a man (A, Vincent) and his wife’s name (B, Clothilde), and
then practice asking them to answer B when asked about A. The next step is to transfer
the pair of A to C(C, Jean-Christophe) rather than B. Subjects find it difficult to respond to
paired A-C that is not significantly related than paired A-B, which is relatively important.
According to this hypothesis, Inga shows performance similar to that of other subjects, while
Otto does not. Otto recorded the A-B pair in the first step and the pair A-C in the next step.
Knowing the pair A-B stored on the computer does not interfere with the process of knowing
the pair A-C. Unlike the subjects and Inga, Otto does not exhibit the phenomenon of negative
transfer.

On the other hand, we will perform the task of memorizing pair A-B to carry generation
effect experiment out. One group memorizes the word itself, such as Monkey-Banana, while
the other group memorizes a pair of words in a sentence, such as Monkey eats a banana. As
expected, the task performance increases when memorizing word pairs in a sentence. Let’s
apply this to Inga and Otto. Inga does a better job in memorizing pairs of words in sentences
whereas Otto does not. Otto does not show any difference in the performance of the task due
to the setting conditions of the generation effect experiment. In the above two experiments,
the claim that Inga and Otto’s information is the same in importance or relevance may be
somewhat exaggerated or misleading. Thus, extended cognitive advocates suggest that they
do not necessarily have to assert strong positions. If Inga and Otto suggests that they are
’somewhat’ identical, the cognitive process can be extended to some extent.

16
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Coupling Arguments

Let us look at the coupling arguments. As if we use pencil and paper to solve complex
multiplication problems, people tend to rely on the tools from the surroundings. Because
human organisms are connected to external entities. In other words, if process X has a
reliable causal effect on cognitive process Y, one can infer that the whole X-Y is legitimately
cognitive. In other words, the binding action in the brain as well as the binding action in the
environment can be reliable.

Fig. 2.2 An example of coupling arguments - Tetris Game

Let us take the famous game Tetris as an example (Figure 2.2). The next Tetris shape
should be rotated 90 degrees to fill in the empty space on the horizontal line. And we have to
think about where to put the next shape. We can imagine in our head what the shape would
look like if we rotate it, but we can also rotate it and see it on the screen.

In the extended cognitive theory, there is no difference in cognition between the perception
directly into the head and the game of watching the rotation pattern while checking on the
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computer screen. Problem solving with the help of a computer screen is also a cognitive
process.

2.4 Combination of Artificial Intelligence and Embodied
Cognition

Artificial Intelligence(AI) emerged with the advent of computers in the 1950s and has
continued to evolve. In the early thirty years, artificial intelligence was philosophically based
on rationalism. AI tried to implement intelligence through knowledge program ( Charniak
and McDermott [25]). This is called the symbolic AI paradigm.

Then from 1990 to the present we call the second Connectionist AI paradigm. This period
is philosophically based on empiricism. It took a methodology to implement intelligent
systems by learning from data. This second paradigm is developing rapidly, especially in
recent years, through Deep learning. Deep learning has the advantage of solving complex
problems well, but it requires a lot of training data and is difficult to interpret the model.
Symbolic Artificial intelligence(AI) model, on the other hand, is easy to interpret but has the
disadvantage of poor learning.

Artificial intelligence(AI) technologies such as machine learning and deep learning
may be merely the ability to classify after pattern analysis. But Artificial intelligence(AI)
technologies quickly classify and analyze massive amounts of data that humans cannot
handle. Computer computing power never lags behind the human brain. But we need an
algorithm that translates this computing power into intelligence. Artificial intelligence(AI) is
part of the effort to find this algorithm.

In the age of symbolic AI, artificial intelligence was developed by human logic, while
in the age of connectionism AI, AI algorithms were automatically developed from data by
machine learning. Connectionism is a way for machines to learn data passively, but its
intelligent is limited to a certain level. Therefore, the third AI paradigm should be an artificial
intelligence as a brain-like cognitive system. It is a reinterpretation of artificial intelligence
within the theoretical frame of embodied cognition that appeared in the 1980s and 90s.

Rodney Brooks, a pioneer of embodied artificial intelligence, said that by excluding
internal representation, he could build a faster and more robust robot. Brooks studied robots
that can move and navigate similarly to insects that exclude internal representation.According
to Brooks, intelligence is defined by the dynamics of interaction with the world.

The third cognitive AI is an autonomous cognitive system in which a machine has sensors
and motors and interacts with the environment to create learning data itself. This means
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that there is no limit to intelligence enhancement, and it provides the basis for reaching true
human-level artificial intelligence or artificial general intelligence.

2.4.1 Classical Artificial Intelligence and Connectionism

We buy products we want on the Amazon website and ask for today’s weather via voice
recognition Siri. Amazon kindly presents similar products and interesting shopping lists
at the bottom of the screen, and the smart Siri also notices if my voice cracks because of
cold. AI is now deeply embedded in our daily lives. In addition, artificial intelligence
adopting machine learning is being evolved by applying to natural language processing,
speech recognition, image recognition, etc.

Artificial Intelligence (AI) is a technology that enables machines to learn from experience,
to adjust existing knowledge based on new inputs, and to perform tasks in a human-like way.
In other words, the ideal artificial intelligence can be said to be the implementation of human
intelligence. AI does not have to resemble human intelligence, but human intelligence is still
regarded as an ideal model to overcome its weaknesses and limitations. The symbolic AI
mentioned above has a top-down approach. The symbolic AI is the main research subject at
the high-level to clarify the cognitive function and its associated algorithm.

Symbolic AI is considered to have a constituent structure in which cognitive states are
associated in part-whole. Symbolic AI, for example, sees our mental states organized in
part-whole relations, from simple mental states to complex mental states, in a way that
corresponds to the logical combination of sentences. It has syntactic properties which are
logical or formal features that form the basis of inference between mental states, forming part-
whole relationships. However, this classical artificial intelligence contributed to explaining
higher cognitive capacities such as propositional inference, but showed a limitation in
explaining lower cognitive capacities such as pattern recognition. That’s why Connectionist
AI was sought.

The connectionist AI paradigm takes empirical methodology.In particular, we will com-
prehend cognition based on neurophysiology based on the specific understanding of the
human brain. Just as our cognitive system improves cognitive ability through repeated expe-
riences and learning, connectionism tries to raise cognitive ability through repeated learning,
constructing artificial neural networks similar to the human brain. In classical AI, there is a
part-whole structural association between cognitive states. This structural association deter-
mines the inferential association between cognitive states. However, connectionism denies
this structural connection between representations. Each cognitive and representational state
is only one physical state, which is composed of a combination of neurons.
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Reasoning in connectionism is a causal process. This process is described in a mechanical
way of electrochemical reactions between neurons. Also, in connectionism, learning and
the subsequent improvement in ability are explained that they are caused by the connection
strength of neurons. Connectionism has since been studied in machine learning methods
such as decision trees and Bayesian nets and has evolved into deep learning.

2.4.2 Embodied Artificial Intelligence

Rodney Brooks, one of the pioneers of embodied intelligence, developed ’Ghengis’, a
robot that moves and navigates like an insect. He introduced the concept of action-based
subsumption architecture. Ghengis was working to prove the subsumption architecture.
Ghengis’ central processing unit does not control all actions.

The ant-shaped Ghengis has six legs and a sensor attached to each leg. These sensors
cause other legs to react. In other words, even without a central processing unit acting
as a brain, it can elicit a response to a specific action. These activities have become an
important research area for sensory-motor intelligence at the low level. Thus, the embodied
approach is based on constructivist methodologies that form development and learning
through interaction with the environment rather than assuming a given one.

This constructivist methodology is in line with the embodied cognitive system theory
that emphasizes the agent’s interaction with the environment with the body ( Varela et al.
[139], Barsalou [10]) and with the perceptual behavior system theories which states that
cognition is based on the behavior of the environment ( Prinz et al. [116]). In this sense, the
concept of free will and self can be interpreted as being sociocultural through interaction
with the environment and others ( Prinz [115]). The objectives of the embodied approach
are firstly based on understanding biological systems, secondly by attempting to abstract
intelligent behavior into general laws, and thirdly by the application of knowledge to create
robots or general intelligence devices.

First, let us look at the development of robots using the embodied approach. Robotics
research has an extensive sensory motor repertoire, and has the advantage of studying more
and more interrelationships with the outside world.

For example, Let us consider a recent study of humanoid walking robots. Even though
it is slower than humans and there are many unnatural aspects of working styles, it has
been a remarkable achievement (Research on humanoid robots such as Honda’s Asimo and
Kawada’s HRP). Furthermore, the University of Oslo in Norway recently introduced the
Dynamic Robot for Embodied Testing (DyRET) using embodied cognition. They are inspired
by four-legged mammals, therefore they are designed to move on their own.
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Fig. 2.3 DyRET: Dynamic Robot for Embodied Testing
(source:https://www.digitaltrends.com/cool-tech/dyret-robot-learns-to-walk/)

Of course, the artificial intelligence we ultimately want to realize is high-level intelligence.
Rather than low-level intelligence based on behaviors under the sensory motor system, higher
levels of intelligence, such as problem solving, reasoning, natural language understanding,
emotional processing, and perception, should be realized. The question then is whether
artificial intelligence can process symbols like humans. How can organisms acquire meaning
from the world? How can they create symbolic grounding problems based on what they have
learned? Where can I find the answer to these questions? We must find the answer not only
in terms of learning but also in terms of embodiment.

We will look at the case of image recognition using visual information. As in the case of
objects or facial recognition, we have the ability to very accurately perceive a distorted image
despite light, distance, and direction very accurately. Even under the shining sun or at dark
nights, we can accurately identify the faces of our families. This is because the agent does
not simply accept the input vector as it is. Changing stream of sensory stimulation is closely
related to the agent’s current behavior ( Pfeifer and Iida [109]). Through interaction with
the physical environment, the agent derives and demonstrates sensory simulation ( Pfeifer
and Scheier [110]). In this way, embodied artificial intelligence will be able to solve and
recognize problems in the "real world" by placing the interaction between objects and the
environment at the core. Embodied AI is an AI paradigm that can deal with real-time online
situations in which reasoning and learning are cyclically linked.
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2.5 Conclusions and the future

We have previously examined the philosophical and theoretical background of embodied
cognition. We also compared the four theories of embodiment (embodied cognition, embed-
ded cognition, enactive cognition, extended cognition) with each other to see how embodied
cognition would be implemented in artificial intelligence. The human cognitive process has
only been understood as a mechanism for acting on a given object, but the new cognitive
science has proposed the theory of enaction through embodiment. Since human beings are
self-generate cognitively, they will be able to demonstrate better their cognitive creativity on
the basis of embodiment.

In this paper we will examine the correlation between cognition and gestures in the
problem solving process. We will apply the theory of embodied cognition to simulate this
problem solving process. In particular, I would like to examine the reasoning in the process
of problem solving, visual information and gestures, and understanding of language from this
perspective. We would like to apply deep learning methods from an embodied perspective.
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Chapter 3

Neural Networks and Deep Learning

In the previous chapter, we introduced the concept of embodied cognition. In this and the
next chapter, we will look at how humanized cognition can be combined with artificial
intelligence to understand human inference and cognition.

In particular, according to the cognitive embodied approach, the cognitive process is
deeply related to the body’s interaction with the environment, which has a great influence on
our thinking, reasoning and decision making. We intend to simulate this process of inference
through neural networks and deep learning.

In Chapter 5, we are going to do an experiment to solve the Tower of Hanoi puzzle
problem to observe the effects of behavior in the cognitive process. And based on this
experimental data, We will try to solve the puzzle problem using neural network modeling
in chapter 6. First of all, we will solve the problem with typical multi-layer perceptron
modeling. And then, we will present an inference solution that can figure the rules of the
game.

In chapters 7 and 8, we want to focus on the behavior of the actor to find the solution of
the puzzle. To do this, we intend to approach problem solving by using a Recurrent Neural
Network ad Convolutional Neural Network. Lastly, the chapter 9 is intended to simulate
how language learning is possible based on the recognized objects and rules. Also, on the
contrary, based on language learning, we also want to realize whether it is possible to learn a
cognition and rules of games. Therefore, in this chapter, we would like to mention the neural
network and deep learning which are the entire theoretical backgrounds.
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3.1 Introduction

We remember that the AIphaGo program developed by Google’s DeepMind had a historic
victory against South Korean Go grandmaster Lee Sedol in April 2016. This event was a
landmark achievement for an Artificial Intelligence.

AlphaGo used machine learning to learn Go’s rules and strategies. It is known that the
number of choices in the game of Go is much higher than the atoms in the universe. So in
the case of one’s playing, one’s intuition plays a significant role. After the intuitive judgment,
the Go players are searching for the best strategy. AlphaGo reduced the number of cases
using Tree search. Also in order to find the optimal solution, AlphaGo used 1202 CPUs and
176 GPUs. AlphaGo also used two artificial neural networks to think like humans: Policy
network and value network. Now, AlphaGo has gone a step further to develop universal
artificial intelligence after confronting humans. As such, artificial intelligence is approaching
the human realm, and more than ever, interest in artificial intelligence and deep learning has
become more active.

As we saw in the second chapter, connectionism is an approach to the study of human
cognition that explicitly employs some of the mechanisms, known as connectionist networks
or neural network models ( Adorf [1]). The neural network models, starting from the anatomy
and physiology of the nervous system, are able to learn and their behavior improves with
training or experience.

The history of artificial neural network climbs back to the 1940s. Neuroscientists learn
that what neurons do is similar to the binary circuits that make up a computer, and they begin
to design artificial nerves called perceptrons ( Rosenblatt [124]). This perceptron is the origin
of neural networks (deep learning). In 1958, the New York Times published an article about
a world where robots would soon be able to walk, speak, and recognize self. 1

Contrary to expectations, perceptron does not solve most problems, and neural network
technology is in a recession for some time. But with the advent of Multilayer Perceptron
technology and the back propagation algorithm, artificial neural network technology is facing
a new phase.

Marvin Minsky shows that we can solve the XOR problem by constructing a neural
network with a Multilayer Perceptron(MLP). However, it was impossible to calculate the
weight of hidden layers in this model. In other words, there was no way to learn Multilayer

1 The New York Times
Psychologist Shows Embryo of Computer Designed to Read and Grow Wiser(July 7, 1958)
... Dr. Rosenblat, a research psychologist at the Cornell Aeronautical Laboratory, Buffalo, said Perceptron
might be fired to the planets as mechanical space explorers. The Navy said the perceptron would be the first
non-living mechanism « capable of receiving, recognizing and identifying its surroundings without any human
training or control » ...
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Perceptron at that time. To solve this problem, the concept of back propagation of error can
be introduced to train the Multilayer Perceptron(MLP).

However, the learning of MLP in a multi-layer structure can be learned through this
Backpropagation. Experience has shown that MLP requires more hidden layers of artificial
neural networks for better results. However, the higher the number of hidden layers make
you are faced with gradient vanishing, which makes it impossible to calculate the weight due
to Backpropagation.

We then proved that it is possible to learn MLP, no matter how many layers of the neural
network are, if we choose the initial input well. The methodology suggests that even complex
problems can be solved with a large number of hidden neural networks. Such a neural
network with a large number of layers is called a deep neural network, and a method of
learning a deep neural network is called Deep Learning.

With the development of big data in the 2000s, the study of artificial neural networks
became more vibrant. Computing resources are getting better, data is more abundant, and
there are ways to solve the problems that arise when learning. It is also becoming possible to
solve real-world problems such as recognizing, speaking, or translating objects. This chapter
examines the perceptron and neural network related theories that are the foundation of deep
learning.

3.2 The simple perceptron

The field of neural network was firstly initiated as mathematical models of the information
processing by investigating networks of interconnected neurons, which was based on real
biological neurons. In particular, the simple perceptron has a set of inputs and an output
layer, connected to each other by weighted connections. With regard to the biological neuron
(Figure 3.2), the input and output layer represent neurons, and the weighted connections
represent the synapses between the neurons. Therefore, we can define this model as follows

Consider a linear threshold unit with n inputs x1, ...,xn ∈R and n+1 weights w0,w1, ...,wn.
Letting x = (x1,x2, ...,xn)

T ∈ Rn and w = (w1,w2, ...,wn)
T ∈ Rn, we have

y = φ(wT x+w0) =

{
1 if wT x+w0 ≥ 0
−1 if wT x+w0 < 0

The goal of the simple perceptron is to decide whether a set of input belongs to one of
two classes, C∞ or C∈. If the output is 1, the pattern will be assigned to the class C∞. It the
output is −1, the pattern will be assigned to C∈. The two classes C∞ and C∈ are separated by
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W0

W1

W2

W3

Fig. 3.1 Model of the neuron (perceptron)

Fig. 3.2 Biological neuron (source: www.wikipedia.org )
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a straight line. Let inputs x = (x1,x2) and weights w = (w0,w1,w2). separation between the
two classes is given by the equation:

w1× x1 +w2× x2 +w0 = 0 (3.1)

x2 =
w1

w2
x1−

w0

w2
(3.2)

We draw a geometric representation of perceptron from equation (3.2). We know that the
weights changes the slope of the line and the bias determines the ’offset’.
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w1*x1 + w2*x2 + w0 = 0

Fig. 3.3 Geometric representation of Perceptrons

In fact, the deep learning we use today has the same fundamental structure as Rosenblatt’s
basic perceptron. The only difference is that it extends to multiple nodes and multiple
layers. Frank Rosenblatt’s perceptron at that time received much of the same expectations
and attention from academics and the media as today’s deep learning. Many hoped that
Perceptron could create artificial human-like intelligence. But in 1969, Marvin Minsky
and Seymour Papert mathematically proved the limitations of Perceptron in a book called
“Perceptrons: an introduction to computational geometry” ( Minsky and Papert [91]). Since
then, the expectation and enthusiasm for artificial intelligence have rapidly decayed. Minsky
and Papert pointed out that Perceptron is a simple linear classifier and cannot perform even
simple XOR classification (See Figure 3.4).

Perceptron enabled the implementation of gates such as AND, OR, and NAND. However,
in the case of XOR gates, the perceptron is impossible to implement by alone itself. Percep-
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Fig. 3.4 A single Perceptron’s Limitations

28



3.3 Backpropagation algorithm

INPUT LAYER

HIDDEN LAYER

OUTPUT LAYER

Fig. 3.5 Multilayer perceptron

tron divides the area by a straight line because the XOR gate does not divide the area by a
straight line.

3.3 Backpropagation algorithm

In 1986 Geoffrey E. Hinton et al. succeeded in learning multilayer perceptrons with error
backpropagation algorithms. The simple perceptron could calculate the error from the desired
result and adjust the weight proportionately. In contrast, multilayer perceptrons have multiple
hidden layers between the input and output layers. The outputs of nodes belonging to these
layers do not know how to adjust the weights because there is no basis for measuring the
error. However, the backpropagation algorithm is able to readjust the weights between the
nodes of the hidden layer while sending the error occurring at the output layer from the
output layer to the input layer. Backpropagation algorithms have proven to be able to train
multi-layered perceptrons with many hidden layers. This is the basis of the algorithm for
learning neural networks. We will briefly look at the error backpropagation algorithm below.

The model in Figure 3.5 is a simple feedforward neural network with an input layer on
the left side, a hidden layer and an output layer. In the figure, xi is the input of the model, zi

is the output of the node in the hidden layer, and yk is the output. x0 and z0 are biases of the
input layer and the hidden layer, respectively. wk j means a weight connecting node j and
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node k. Firstly, when the pattern is an input to the model in the figure 3.5, the output value of
k of the output node (yk) is expressed as follows.

yk = σ

(
M

∑
j=0

wk jh

(
D

∑
i=0

w jixi

))
(3.3)

In this equation, σ(.) and h(.) are activation functions at each node and sigmoid function
is used. However, for the output layer, the softmax function is used. The inputs to the hidden
and output layer nodes are called a j and ak. The formula from input to output is as follows.

a j =
D

∑
i=0

w jixi (3.4)

z j = h(a j) (3.5)

ak =
D

∑
j=0

wk jz j (3.6)

yk = σ(ak) (3.7)

Now, to train the neural network, we set the error function as follows.

E(W ) =
1
2

N

∑
n=1
||yn− tn||2 (3.8)

where
yn : output vector of neural network,
tn : target vector of neural network,N : number of learning patterns

.
The goal of the backpropagation algorithm is to calculate the partial derivative of the cost

function E with respect to the weight w or bias b in the network. Since E(W ) is nonlinear in
the extreme multidimensional space, there can be numerous points where the first derivative
is zero. In order to optimize this case, the method of iteratively improving the w vector which
reduces the value of the error function is as follows.

W (τ+1) =W (τ)+∆W (τ) (3.9)

The superscript τ in the equation represents the iteration step and the improved value k to
the next step depends on the algorithm. The simplest form is to use a partial derivative called
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gradient descent or steepest descent. This method means that small steps in the gradient
direction increase the error and steps in the opposite direction to reduce the error. It is
expressed by the following equation.

W (τ+1) =W (τ)−η∇E(W (τ)),where η : learning rate,η > 0 (3.10)

Now let’s look at the error backpropagation algorithm. Considering an error function of
one pattern among N input patterns, it is as follows.

En =
1
2

C

∑
k=1

(yk− tk)2 (3.11)

In the figure, wk j is the weight connecting node k of the output layer and node j of the
hidden layer. The partial derivative of wk j in E(W ) is as follows.

∂En

∂wk j
=

∂En

∂ak

∂ak

∂wk j
(3.12)

The above equation shows the partial derivative as the product of two partial derivatives
using the chain rule. Since ak is the input value of node k of the output layer, it can be
expressed as follows by equations 3.7 and 3.11.

∂En

∂ak
= (yk− tk)σ

′
(ak) (3.13)

Then let us rewrite the equation by 3.7.

∂ak

∂wk j
= z j (3.14)

δk ≡
∂En

∂ak
(3.15)

∂En

∂wk j
= δkz j (3.16)

Now let’s look at the partial derivative for w ji, the weight that connects node j of the
hidden layer with node i of the input layer. Therefore, the equation can be expressed as
follows by 3.12 and 3.16.

∂En

∂w ji
=

∂En

∂a j

∂a j

∂w ji
= δ jzi (3.17)
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However, δ j in 3.17 has the same meaning as δk defined in 3.15, but the form is more
complicated. Therefore, if δ j is also applied to the chain rule, the equation is expressed as
follows.

δ j =
∂En

∂a j
= ∑

k

En

∂ak

∂ak

∂a j
= ∑

k

∂En

∂ak
(
∂ak

∂ z j

z j

∂a j
)∗/ (3.18)

Finally, the equation 3.18 can be expressed as follows by using 3.14, 3.15, and 3.15

δ j = h′(a j)∑
k

wk jδk (3.19)

The backpropagation alrorithm computes the partial derivative of En by continuing to
pass δ j in this way. The backpropagation algorithm is now summarized as follows.

1. Input pattern xn is put in the neural network’s input layer and the value is forwarded
according to 3.4 and 3.5. In the process, it stores z j which is an output value of each
node.

2. δk for the node of the output layer is calculated using3.15.

3. Calculate δ j for nodes in the hidden layer by forwarding the delta backwards.

4. Compute the partial derivative using 3.19.

As shown in Figure 3.5, MultiLayer perceptron (MLP) is a feedforward neural network.
The units in every layer (Input, Hidden and Output) are connected via feeding forward from
one layer to the next. This model is trained with the backpropagation learning algorithm.
MLP is widely used for speech recognition, pattern classification, and so on.

3.4 Recurrent Neural Networks

Recurrent neural network(RNN) models are suitable for processing sequential information,
like time series data such as stock market and macroeconomic analysis, as well as language
and speech recognition.

The feedforward neural network discussed above was a neural network flowing in only
one direction from the input layer to the output layer. In contrast, RNN (circulating neural
network) is similar to feedforward neural network, but the output is written again as an
input data as shown below (Figure 3.6). This is called a recurrent connection, which is very
interesting.
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3.4 Recurrent Neural Networks

Fig. 3.6 Recurrent Neural Network Architecture(RNN)

For a better understanding,let us look at an example from Goodfellow et al ( Goodfellow
et al. [52]). Here are two sentences: ’I went to Nepal in 2009’ and ’In 2009 I went to Nepal’.
We want to use machine learning to find out which year I traveled to Nepal. Whether or
not the year 2009 is at the end of the sentence, we know that we traveled in 2009. The
feedforward model learns differently depends on the year position. Unlike the feedforward
model, the RNN model shares the same weight across multiple time steps. Thus, the RNN
model does not matter whether the year 2009 is in the head or the back of sentences.

RNN is a model on the left side of the figure 3.6. Given the input data(xt) of t time, the
RNN is multiplied by the weight(U) and input to the internal node. The internal node creates
a state value by adding information which has previously been stored. The state value ht of
the internal node at t time is expressed as the following expression.

ht = f (Uxt +Wht−1) (3.20)

The function f uses sigmoid or ReLu as the activation function. The output of the model
at t time is generated by multiplying the internal node’s state value by V and in some cases,
applying the softmax function.

The model on the left side of the figure 3.6 looks simple at first glance, but the re-entry of
previous information from the internal node to the loop is different from the forward neural
network, which complicates the operation of the model. Let us draw the RNN as it progresses
over time to make the model easier to comprehend. That is the model on the right side of
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the picture. If you unfold the model like this, you can say that it is a forward neural network
with three inner layers (ht−1, ht , ht+1).

The difference is that the input data is put in as different internal nodes and the weight W
connecting the internal layers is the same. In the expanded structure on the right side of the
figure 3.6, the number of internal nodes is depicted as three, but the number depends on the
number of inputs. For example, if you enter 10 words in a sentence, 10 internal nodes will be
created.

RNN frequently uses cross-entropy error functions. If the target value at time t is tt and
the output of the model is at , the error value at t time is: The error is ∑t Et .

Et(tt ,yt) =−tt logyt (3.21)

The method of learning weights in RNN is to apply error backpropagation algorithm
to the unfolded model. However, it is necessary to add a partial function for overlapping
weights. This method is also called Backpropagation through time (BPTT). Now let’s look
at the calculation method the first-way derivative for W , the weight that connects the inner
layers. The linear derivative function for W across the model is as follows.

∂E
∂W

=
T

∑
t=1

∂Et

∂W
(3.22)

Applying the chain rule using the partial derivative of t time output (yt) in the expanded
model of the figure, the first order of Et for W that leads to the internal node expressed as ht

is as follows. The partial derivatives are

∂Et

∂W
=

∂Et

∂yt

∂yt

∂ht

∂ht

∂W
(3.23)

On the other hand, since W must go back to the internal node of the first stage, the first
derivative of Et for W which is connected to h1 is:

∂Et

∂W
=

∂Et

∂yt

∂yt

∂ht

∂ht

∂ht−1
...

∂h2

∂h1

∂h1

∂W
(3.24)

3.23 and 3.24 can be added together by calculating the partial derivatives of W in the
middle stage and using 3.22.

∂E
∂W

=
T

∑
t=1

t

∑
k=1

∂Et

∂yt

∂yt

∂ht
(

t−1

∏
j=k

∂h j+1

∂h j
)
∂hk

∂W
(3.25)

Similarly, the partial derivatives for U and V can be calculated. However, in the process
of calculating the partial function using 3.25, a multiplication of the partial function occurs.
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Fig. 3.7 LSTM Memory cell

As the number of sentences input and the number of internal nodes increase, the number
of multiplications naturally increases. Multiplying so many values can cause the partial
derivatives to be close to zero(vanishing gradient) or very large(exploding gradient).

This can be solved relatively easily by limiting the value of the partial derivatives to be
very large, but it is not easy to find a case near zero, which causes the learning speed of
the weight to slow down or stop. In addition to the sigmoid function, ReLU can be used
as an activation function to reduce the value of the partial derivatives, but a model to solve
the vanishing gradient problem was proposed in 1997, which is a long short-term memory
( Hochreiter and Schmidhuber [59].

LSTM changed the internal node of the RNN in the figure 3.7 into a complex structure
called a memory cell.

The LSTM memory cell has four components: an internal memory node with cyclic
inputs and three switches. Each switch is a value between 0 and 1, such as a logistic function,
that controls the value passing through it. The formula to modify the state value of the LSTM

memory cell at t time is as follows. Firstly, if it is the input gate value and
∼
Ct is the input

value of the internal memory node, the value is calculated as follows.

it = σ(Uixt +Wist−1 +bi) (3.26)

∼
Ct = tannh(Ucxt +Wcst−1 +bc) (3.27)

Now, if ft is the value of forget gate, the new state value of the internal memory node is
calculated as follows.
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ft = σ(U f xt +Wf st−1 +bc) (3.28)

Ct = it ∗
∼
Ct + ft ∗Ct−1 (3.29)

Using the new state value, we calculate the value of the output gate ot and the memory
cell output as follows.

ot = σ(Uoxt +Wost−1 +b0) (3.30)

st = ot ∗ tanh(Ct) (3.31)

In the above equation, W , U and V are the weights at the corresponding gate and b is the
bias. The type of input/output data of a RNN is generally a sequential model. However, in
some cases, non-sequential data may be input or output. Various applications are possible
depending on the type of input/output data. When the input / output data is sequential, it is a
case where the machine translation or annotation is applied to the video. If the output data is
out of order, it can be applied to emotion analysis. The case where the input data is out of
order is applied to annotations for pictures.

3.5 Convolutional Neural Network(CNN)

David H. Hubel and Torsten Wiesel conducted a cat experiment that provided crucial insights
into the structure of the visual cortex ( Hubel and Wiesel [62]).

They have shown that many neurons in the visual cortex have small local receptive fields.
This means that neurons respond only to visual stimuli that are within some range of vision.

Receptive fields of neurons can overlap one another, and these overlapping receiving
areas form the entire field of view. Additionally, some neurons responded only to images of
vertical lines, while others responded to lines of different angles. They also demonstrated
that some neurons with large receptive field respond to complex patterns(texture,object) by
combining low-level patterns (edge,blob). This observation led to the idea that high-level
neurons are based on the output of neighboring low-level neurons.

Receptive zones mean that external stimuli affect only a specific region rather than the
entire region. You may find that when you poke through various parts of your body with
your fingers, you have a limited range of feeling. Also, the size of the area you feel depends
on where you poke.
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Fig. 3.8 Hubel and Wiesel Experiment
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Likewise, pixels at a specific location in the image have a high correlation with only some
of the pixels around them. As the distance from the pixels increases, the influence decreases.

If you want to use this algorithm to interpret the video or image (recognition algorithm),
you do not need to give the same importance to the entire image. Instead, if you process only
a specific range, you will be able to interpret the image more effectively.

This idea has been developed into a convolutional neural network (CNN). Yann Lecn
et al. presents a practical paper that combines MLP and Backpropagation Algorithm with
Convolution to apply MNIST problems ( Le Cun et al. [78]).

Fig. 3.9 Convolutional neural network structure ( LeCun et al. [79])

Then, in 1998, LeCun et al. proposed the Neural Networks structure, which is the origin
of the modern Convolutional Neural Networks (CNNs) called LeNet-5 (See Figure 3.9). The
LeNet-5 is a practical application in the post office’s check recognition system, demonstrating
the strong power of artificial neural networks ( LeCun et al. [79]).

More specifically, let’s take a look at how CNN works. CNN can be seen as an integrated
model that combines the two steps, feature extraction and classification, into one step in the
existing pattern recognition method. The CNN basically consists of a plurality of convolution
layers and subsampling layers.

The figure 3.10 describes the key ideas of convolution and subsampling. The convolu-
tional layer generates a feature map by applying various convolution kernels to the input.
Convolution acts as a template for extracting features from high-dimensional input images.
One convolution targets partial inputs and is repeated several times, changing positions,
scanning the entire image.

That is, one convolution has a small number of connecting lines, and the weight of the
connection is shared even when the position is changed. This allows convolution to extract
features regardless of location. For a convolution, sharing weights despite of change of
position, is one of the key ideas to reduce the complexity of the problem by reducing the
total number of parameters to learn.
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Fig. 3.10 Convolution and subsampling

The subsampling layer is a neuron layer with reduced spatial resolution for the created
feature map. Subsampling is the process of reducing dimensions, which also reduces the
complexity of the problem. As the subsampling operator, the maxpooling operator that takes
the maximum value for the target neurons or the average pooling operator that takes the
average value is mainly used. Pooling not only reduces dimensions but also makes the feature
map robust to shift and distortion.

Fig. 3.11 Comparison of fully connected layer, regionally connected layer, and convolutional
layers.

The figure 3.11 also illustrates the idea of convolution. We describe how the convolutional
layer differs from the fully connected layer and the locally connected layer. In the fully
connected layer, there is a connection line between neurons in a neighboring layer. All
neurons in one layer and all neurons in a neighboring layer are connected. In other words,
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if the number of neurons in each of the two layers is five, there are 5×5 = 25 connecting
lines and 25 weights between the two layers. In contrast, using a locally connected layer,
neurons in the upper layer are only connected to some neurons in the lower layer. (See the
center figure in Figure 3.11). In the middle figure, the five neurons in the upper layer are only
connected to 2 3 neurons in the lower layer, each with 2 + 3 + 3 + 2 = 13 connections.

The connecting lines of each neuron have different weights. The convolutional layer
(right side of Figure 3.11) has the same partial connectivity as the locally connected layer,
but upper layer neurons share weights with each other. That is, five neurons in each upper
layer share these 3 weights. Therefore, although there are 13 connecting lines, the weight
is 3. By doing this we reduce the number of parameters we need to learn. Using such a
connection structure, it is possible to extract a portion which has a similar feature with a
different position, so that the feature can be extracted regardless of the movement of the
object from side to side in the input image.

As a concrete example, let’s look at the structure of LeNet5 (Figure 3.9). The model
takes a 32×32 pixel image as input, undergoes three convolutions and two subsamplings,
and finally determines the output through a fully connected multilayer network.

Convolution uses a 5×5 matrix and subsampling is 1/2. The overall structure can be
described as follows, where Cn represents the nth convolutional layer and sm represents the
mth subsampling layer.

• C1: Constructs 6 feature maps of shape 28×28 using a convolution matrix of 5×5
from a 32×32 image.

• S2: Constructs 6 subsampling map of shape 14×14 using 1/2 subsampling from each
28×28 feature map in C1.

• C3: Again, we construct 16 feature maps of shape 10×10 using a 5×5 convolution
matrix.

• S4: Again, use 1/2 subsampling to construct 16 subsampling maps of shape 5×5.

• C5: Constructs 120 convolutions from the result of S4.

• F6: 84 subsampling is done using the fully connected layer.

• RBF: Finally, the output is calculated from 10 RBF neurons.

All neurons before the F6 layer have sigmoid activation functions and are defined as
follows.
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3.5 Convolutional Neural Network(CNN)

fi = f (vi) = Atanh(Svi) (3.32)

S and A are parameters that determine the shape of the activation function, usually using
constants. In the last layer, the output value of the CNN is determined by the output feature
map and the image map as follows.

y j =
84

∑
i=1

( fi−Wi j)
2,where j = 0, ...,9 (3.33)

fi are output image feature values and wi j are target image feature values. In this design,
the total number of connections is 187000. This corresponds to the number of weights
187384 in a multilayer neural network with a fully connected (28×28)×236×10 structure.

However, the number of variable weights that are actually learned is 14000, which is
much smaller than the total number of connections (10% or less). The structure of the
LeNet CNN is not larger than the fully connected multilayer neural network MLP. However,
convolution at run time is slow because it takes 67 percent of the time. The Cnn described
above uses three convolution layers, so execution is three times slower than the same size
mlp. Previously, the results were reported to go through a radical basis function (RBF).
Recently, however, the use of rectified linear unit (ReLU) neurons as an active function can
alleviate the vanishing gradient problem.

Such CNN has been successfully applied to text recognition and to various types of image
recognition. Especially in the fields of speech recognition, document reading, and handwrit-
ing recognition, it has been applied since the early 1990s. However, CNN has become a
major concern in the academic world since the image recognition model ( Krizhevsky et al.
[72]) released in 2012 has achieved remarkable results.

This model is responsible for classifying as many as one million color images into a
thousand classes. The overall model is shown in Figure 3.9. As shown in Figure 3.9, since
this model is implemented by two GPUs, the inner layer is divided into two parts except the
input layer and the output layer.

There are three input panels because the color image must be recognized. In Figure 3.9,
the first inner layer on the right side of the input layer performs convolution and max-pooling,
which consists of 96 panels. The second inner layer to the right performs convolution
and max-pooling as well, with a total of 256 panels. The next two inner layers consist
of convolutions without max-pooling, and the fifth inner layer consists of 256 panels that
perform convolutions and max-pooling.

The sixth and seventh inner layers are all connected to the nodes of the lower layer, and
the final output layer consists of 1000 nodes. The model has a weight of approximately 60
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Fig. 3.12 Convolutional Neural Networks for image classification ( Krizhevsky et al. [72])

million and took six to seven days using a GTX 580 3GB GPU to learn. This model uses
ReLU (max (0, x)) as an activation function to reduce learning time and to prevent over
fitting in a dropout manner. In addition, the recognition rate of the model is increased by
transforming the learning image to increase the number of input patterns. As a result, we
achieved an error rate close to half of the recognition error rate of other models at that time.
For that reason, many current CNN models have 10-20 ReLU layers, billions of node-to-node
connections, and train hundreds of millions of weights. Of course, with the development of
learning algorithms and the development of GPU technology, the learning speed has been
reduced by several hours.

3.6 Conclusion and the future

In this chapter, we looked at the emergence of artificial neural networks and their evolution.
We also reviewed the RNN and CNN theories that are representative supervised learning
of artificial neural networks.RNN means that in sequential data, it remembers all the past
information and also predicts the next behavior. The RNN algorithm also supplements
the vulnerability through LSTM - This algorithm does not consider information that can
be forgotten or ignored.As if humans don’t need to remember any information, LSTM
treats sequential data faster and more efficiently through information selection. Nowadays,
interactive artificial intelligence based on RNN is emerging one after another.

Convolutional neural networks that construct neurons by mimicking animal visual cortex
are actively used for speech recognition or image analysis. Especially, CNN of computer
vision and RNN for natural language processing are combined to build translation module
between image and language. In Chapters 7 and 8, we will use CNN and RNN together to
simulate language in terms of embodied cognition. In Chapter 6, we will use a traditional
multilayer perceptron to simulate the problem solving. We also try to figure out how to make
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inferences when we are faced with unlearned situations. To do this, we tried to infer by
comparing and analyzing information about agent’s behavior, object’s state and location.

Deep learning uses more advanced neural network algorithms to implement faster, emo-
tional, human-like computer programs. Here we would like to see the hypothesis presented
by the mathematician Laplace. If technology is advanced, computer’s power is incomparable,
and all possible variables can be set, we hypothesize that we can predict the past, present and
future.

This, of course, is akin to reckless optimism. But with the advent of big data and
advances in computer technology, more active unsupervised learning is combined with
existing supervised learning that requires human intervention. The AI technology that
computers can learn for themselves like humans may come in the near future. However, there
is criticism that deep learning is only a buzzword for neural networks. It is so-called the
problem of black-box, which is always a problem in neural network theory research. This is
how we can reuse the acquired knowledge itself in neural networks. In the end, we should
start thinking about the cognitive system that makes use of the empirical methodology and
symbolism artificial intelligence.
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Chapter 4

Deep Reinforcement Learning

The neural network and deep learning we presented in Chapter 3 were a learning model
planned by a supervisor. The reinforcement learning presented in this chapter presents a
mental model of the world as an unsupervised learning model. In other words, based on the
current state and behavior of the surroundings, we will create a model that makes predictions
about the next state and behavior.

Psychologist Edward Tolman conducted an experiment in which a rat went through a
maze (See Figure 4.1) In the early learning period, that is, the latent learning stage, it was
observed that the mice draw their own cognitive maps while exploring the maze and learning
the structure without being rewarded.

Once rewarded, the rats showed that they could use the cognitive maps they had already
created to get through the maze faster. This behavioral psychology’s Operant conditioning
resembles artificial intelligence’s reinforcement learning.

Let us Consider the process of actors reaching their goals. If actors are not given enough
information about a given environment, they will have to perform a search for every possible
cases. However, if the actor has a cognitive model of the environment, it is not necessary
to explore possible behaviors individually. You can approach problem solving simply by
inference.

In this chapter, we will examine the theoretical background of reinforcement learning
called compensation through the Operant conditioning. In addition, I would like to consider
how to solve the problem by simply inferring the number of cases without repeating them.
We will simulate the application and consideration of this reasoning method in chapters 7
and 8.
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Fig. 4.1 Tolman’s Maze (source: https://berkeleysciencereview.com/2014/11/man-maze/ )

4.1 Introduction

In the previous sections we reviewed supervised learning such as Multilayer Perceptron(MLP),
Recurrent Neural Network(RNN), and Convolutional Neural Network(CNN). In this chapter,
we will learn about Reinforcement Learning. Reinforcement learning deals with sequential
decision problems in which the order of observation of the data affects the results. In re-
inforcement learning, the agent interacting with the environment chooses the behavior in
its current state. The result is a transition state that is passed back to the agent through a
series of Markov Decision Processes(MDP) that receives rewards. In supervised learning,
Agent received passive feedback from the teacher on the given input and the correct answer
(guidance signal). Reinforcement learning, however, requires learners to generate behavior
dynamically, with only a reward as feedback from the environment.

As we are well aware, humans and animals have advanced brain structures that allow
them to process visual information quickly. This structure allows visual information to be
shown as a small representation of essential dimensions, and humans and other animals
appear to behave in conjunction with this process of reinforcement learning and similar
hierarchical sensory processing systems ( Mnih et al. [93]). Recently, the deep reinforcement
learning is used as the input of the pixels of the image of the video game to enable the learning
the operation of the human-level direct controller. Deep Q-Learning(DQN) has shown that
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human-level manipulation can be achieved using deep learning and reinforcement learning
algorithms. This chapter examines the theory related to the basic concepts of reinforcement
learning and the overall situation leading to the recent achievement of DQN.

4.2 Reinforcement Learning and Markov Decision Process

4.2.1 Basic concept

Reinforcement learning is a learning method that deals with the process by which agents
interact with their environment and achieve their goals (Figure 4.2). The agent is in state st at
time t and selects action at to move to the next state st+1. At this time, the agent is rewarded
with rt+1. Then the agent repeats the sequential decision process, selecting the next action
at+1 from the state st+1. The agent has a policy function π that selects the action at the state
st .

φ : S→ A

φ(St) = at

The reward function is defined as following :

R : S×A×S→ R

r(st ,at ,st+1) = rt+1

The sum of future rewards Rt is defined as follow:

Rt = rt+1 + γrt+2 + γ
2rt+3 + ...=

∞

∑
k=0

rt+k+1

The value V π(S) of the policy is defined as the expected value of the sum Rt of future
reward for taking action according to policy π in the state s.

V π(S) = Eπ [Rt |St = s]

The goal of learning is to find the optimal policy π∗ that maximizes value.
One way to solve the classic problem, the Markov Decision Process(MDP), is the rein-

forcement learning theory. Unlike supervised learning in the previous chapter, Reinforcement
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Fig. 4.2 Basic concept of Reinforcement Learning

Learning does not receive any instructions from the teacher. The learner performs only
certain actions in a given situation and receives only the rewards. This reward will not only
have an immediate effect on the current state, but also will eventually affect all rewards.
Therefore, trial-and-error search and delayed reward are important features of reinforcement
learning.

Also, exploration and exploitation are other important features of reinforcement learning.
The agent chooses the most efficient of the actions(Exploitation) performed in the past to
obtain as many rewards as possible. However for even better and more versatile choices,
agents can also perform actions(Exploration) they’ve never tried before.

All of this series of reinforcement learning attempts to solve the Markov decision process.
The Markov decision process is a random process that states that the values and decisions
of each state exist in an environment where all states have Markov properties. The random
process means that there is no need to remember the past other than the current state, and
that each state is stochastically represented by a random variable. Mathematically, MDP is
defined as (S , A , P , R, γ) (See Figure 4.4). First, let’s see what each element means.

Fig. 4.3 Markov Decision Process

First of all, S is a set of states. State is information that an agent can observe about the
environment. This information can be defined in various ways. In other words, this may be
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various signals at low level observed through the sensory organs of the agent, or it may be a
representation of the senses expressed in higher dimensions. These states usually have some
information to maximize the environment itself or the reward, depending on the problem. If
a state has all the information needed to make the next decision, we call it the Markov state
or Markov property. The mathematical expression is as follows.

P(St+1|St) = P(St+1|S1, ...,St)

When we observe a Markov state, the decision of the behavior for that observation and
the prediction of the next state is the same as the optimal result after observing all the past.
Given a state at time t called st , the agent takes some action at and receives the reward rt from
the environment for the previous actions. This sequence of st ,at ,rt , ...,r1,s0,a0 is named as
history up to t. In general, it is assumed that this complete historical information is required
to obtain a complete probability distribution of the following states st+1 and reward rt+1, but
if the state signal has a Markov property, This probability distribution can be determined
exactly by knowing the state st and the behavior at .

Let us take the example of Go. If we know the placement of black and white stones
at some point t and how much of the opponent’s stone we obtained, we do not need any
previous information on the order in which the games were played in order to place the next
stone. Considering each state of Go as Markov, we can immediately find the optimal choice
without past information, information flow, and memory. In other words, it can be seen that
in the Markov’s environment, no matter how the current environment represents the current
state, it does not have a difference.

Just as we review all past information and make the best choice, the assumption of the
Markov state is that we can make the same best choice by observing the previous state. Thus
it fits well with our intuition. However, while we agree that the theory is concise and easy to
implement, this assumption is often inconsistent with the real-world environment and the
agent’s ability to observe. However, Markov’s assumptions help us with better understanding
of reinforcement learning algorithms. The Markov assumption is the algorithmic basis for
extending the more complex and practical Non-Markov cases( Sutton and Barto [134]).

A is the set of actions. The category of behavior can be discrete or continuous, and these
behaviors must be designed to suit the nature of the problem. P is the state transition matrix.
This gives the probability of a random variable for each next state given the current state and
behavior, which is expressed as Pa

SS′ = P(St+1 = s′|St = s,At = a).
R is the reward function, defined as xy, the average of the rewards to be received next

step. γ is a discount element, given as a real number between 0 and less than 1. This discount
factor determines how much of each reward to be taken at each time step. Animals including
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humans are sensitive to time, even if they have the same total, and tend to judge their value
differently. Thus, uncertainty about the future causes us to seek immediate gains. This
philosophy is expressed in the definition of return Gt , which is the sum of all discounted
rewards since the t point.

Gt = Rt+1 + γRt+2 + ...=
∞

∑
k=0

γ
kRt+k+1 (4.1)

Looking at the definition above, as the γ value approaches 0, the rewards for the near
future are reflected, and as it gets closer to 1, the gamma values reflect the rewards for the
distant future. When the status does not end, the discount element γ is considered to play a
role that does not diverge the sum of rewards. On the other hand, policy is defined as the
probability distribution of the agent’s behavior for a given state and is expressed as follows.

π(a|s) = P(At = a|St = s)

With this definition, the transition matrix when following any policy, and the next
reward function, can be represented by Pπ

SS′ = ∑a∈A π(a|s)Pa
SS′ and Rπ

S = ∑a∈A π(a|s)Ra
S

, respectively.
So far, we have briefly looked at the basic concepts of agents. Next, let’s take a look at

the value function, which is a state measurement function that aims at the goal when an agent
conducts reinforcement learning.

4.2.2 Value function

The value function expresses the long-term value (return) of the state. The state-valued
function V π(s) represents the average return V π(s) = E[Gt |St = s] for the state when the
policy is followed. Behavior-value function qπ(s) is similar to state-value function. This
function shows the average return qπ(s) = E[Gt |St = s,At = a] for state s and action a when
the policy is followed. Substituting these two value functions into the above-mentioned
identical equation for return (equation 4.1) yields the Bellman expectation equation.

V (s) = E[Rt+1 + γV π(St+1)|St = s]

Qπ(s,a) = E[Rt+1 + γQπ(St+1,At+1)|St = s,At = a]

Since the Bellman expectation formula can recursively represent the value of the model for
the policy, a direct solution of the value function can be obtained linearly. The reinforcement
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learning model takes an approach that uses the linearity of these Bellman’s expectation
formulas.

The primary purpose of reinforcement learning is to seek the behavior of the agent with
the most rewards. When the rewards are ordered by the value of the value function, there are
policies with the maximum value of this function, which we define as optimal policy. The
optimal policy is usually expressed with symbols such as π∗. The optimal value function is
defined as the return when the optimal policy is followed. This value can be said to be the
maximum performance of MDP. The optimal state-value function is the value representing
the largest transformation of all policies for a state. It is defined as follows.

V ∗(s) = max
π

V π(s)

The optimal action-value function is also expressed as follow:

Q∗(s) = max
π

Qπ(s,a)

Similarly, the corresponding identical equation is called Bellman optimality equation and
is expressed as follow.

V ∗(s) = max
a

Ra
s + γ ∑

s′inS
Pa

SS′V
∗(s′)

Q∗(s,a) = Ra
s + γ ∑

s′inS
Pa

SS′max
a′

Q∗(s′,a′)

The Bellman’s equation is a nonlinear equation because the maximum value must be
found, as shown in the equation. This Bellman’s best solution is diverse. Reinforcement
learning algorithms are still being developed to solve the MDP using this Bellman’s equation
efficiently.

4.3 Monte Carlo Method and Temporal Difference Algo-
rithm

As discussed in the previous section, reinforcement learning problems are defined as being
solved by obtaining optimal policies in the Markov decision process. Let’s look at the
reinforcement learning method based on the well-known value function. The value function
is defined as the expectation of rewards in the future for continuing to follow the policy π in
the current state St = s.
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Vπ(s) = E[Rt+1 + γRt+1 + γ
2Rt+2 + ...|St = s]

To get the value function according to the definition of this formula, we need to calculate
the expectation. Depending on how to solve these expectations, reinforcement learning can
be divided into two categories: planning and learning. Planning is a probabilistic approach to
calculate expectations through explicit calculations.

Learning expectations are approximately solved using the Monte Carlo method of statis-
tics. This "Planning" method has the big disadvantage that it is necessary to find out the
transition probability of the environment first to get the expected value because it is very
difficult to find out the transition probability in advance. The "Learning" method, on the other
hand, does not require this probability of transition, but requires some practical experience to
approximate the Monte Carlo method. That is, the agent solves approximately this expecta-
tion with a sequence of past and rewards gained from interacting with the environment. The
mathematical expression of the Monte Carlo method is as follows.

G(s) = (Rt+1 + γRt+2 + γ
2Rt+3 + ...|St = s)

Vπ(s) = E[G1(s)+ γG2(s)+ γ
2G3(s)+ ...|St = s]

In order for the expected approximation to be accurate, the larger the number of Sample
G, the more accurate value function can be found. However, the previous value function is
not enough to calculate the optimal policy. We can see the value of the current state s, but to
find out what to do with it, we have to use transition probability to search for the next state
st+1. However, since we do not use transition probabilities here, we need to get the behavior
value function, not the state value function. Fortunately, however, the behavior value function
can be easily computed by simply averaging the return values G of the action a in the state s
rather than the state s.

G(s,a) = (Rt+1 + γRt+2 + γ
2Rt+3 + ...|St = s,At = a)

qπ(s,a) = E[G1(s,a)+ γG2(s,a)+ γ
2G3(s,a)+ ...|St = s,At = a]

If we can get the behavior value function, we can figure out a policy by choosing the
most valuable behavior a given a state s.

π(s) = arg maxaQ(s,a)
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4.3 Monte Carlo Method and Temporal Difference Algorithm

Using the Monte Carlo method, we can get the behavioral value function for a given
policy. However, in order to find the optimal solution, it is necessary to reach the optimal
solution by altering the behavioral value function and policy through the Generalized Policy
Iteration.

π0
E−→ qπ0

I−→ π1
E−→ qπ1

I−→ π2
E−→ ...

I−→ π∗
E−→ q∗

E is an approximation of the behavioral value function from the current policy through
the Monte Carlo method, and the step I , indicated by the arrow, is the step of finding a better
policy from the current behavioral value function.

The Monte Carlo method is a good example of reinforcement learning that is very intuitive
to understand. However, this method has the disadvantage of waiting until the end of the
episode to get the return value G. In the meantime, we can’t do any learning. To solve this
problem, Temporal Difference algorithm has been proposed. The amount of time to wait can
be controlled with the parameter . For TD (0), where λ = 0, we can wait for one step and
start learning immediately. In the Monte Carlo method, the value function is defined by the
following formula:

Vπ(s) = E[G1(s)+G2(s)+G3(s)+ ...|St = s]

In TD(0), however, the value function is computed using a single compensation value
through a trick called bootstrapping.

V (s) = E[Rt+1 + γVπ(St+1)|St = s]

This definition and the definition of the value function used in Monte Carlo are exactly
the same. However, in calculating the expected value, the former has to wait until all the
rewards are obtained, whereas the latter is online learning which can calculate the value
function as soon as one of the rewards comes out. This is a very important advantage because
the Monte Carlo method is difficult to apply to an infinitely long or very long problem. In
addition, TD(0) has a very good ability to learn more quickly from fewer data than the Monte
Carlo method.

Monte Carlo’s dynamic programming method requires a state transition probability. This
method is called model-based RL because state transition probability acts as a model to
describe the nature of the problem. The TD method, on the other hand, is a model-free
RL that does not require transition probability. Another difference is that the Monte Carlo
method is an offline learning method and the TD method is an online learning method.

53



Deep Reinforcement Learning

Fig. 4.4 Model-free Model-based Reinforcement Learning

4.4 State-Action-Reward-State-Action and Q-Learning

In reinforcement learning, there are On-policy control and Off-policy control according to
the agent’s control method using optimal policy. There is a difference in terms of whether
the policy of the agent is updated while executing the policy or whether the policy is updated
by sampling the policies in the existing episode. Therefore, we describe two algorithms that
are the core of each control method in reinforcement learning, State-Action-Reward-State-
Action(Sarsa) and Q-Learning. Sarsa is a representative on-policy control algorithm. This
chapter introduces the method using TD. In the control algorithm, the agent aims to learn
the behavior value function. In the case of the on-policy algorithm, we must infer Qπ(s,a)
according to the behavioral policy π that follows all states s and behaviors a. The learning
method of Q finds the optimal value function by TD in the existing value function clause.
You can get it in the same way. For example, episodes consist of ordered state-behavior pairs.

Fig. 4.5 State-Action Pair

The control algorithm learns the value of a state-behavior pair by considering the proba-
bility of transition from one state-behavior pair to another. This can be applied in the same
way as the convergence of the behavioral value of TD(0) described in the following equation.

Q(st ,at)← Q(st ,at)+α[rt+1 + γQ(st+1,at+1)−Q(st ,at)]
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4.5 Deep Q-Learning

This update algorithm is applied every time a transition occurs, unless it is in the termi-
nating state. If st+1 is the final state, the Q value is defined as 0. The expression must contain
five elements of (st ,at ,rt+1,st+1, at+1). Basically, on-policy control algorithm using Sarsa
continuously infers Qπ through behavior policy π and updates the behavior policy π with
greediness. The Sarsa algorithm is summarized as follows.

When using the ε−greedy policy, all state-action pairs converge if they repeat infinitely.
Next, let’s look at Q-learning, a representative off-policy control algorithm. The Q learning
method was proposed by Watkins( Watkins and Dayan [140]) in 1989 and the formula is as
following:

Q(st ,at)← Q(st ,at)+α[rt+1 + γ max
a

Q(st+1,a)−Q(st ,at)] (4.2)

As in the equation 4.2,the algorithm shows that the Q value that is learned is always
approximated directly to Q∗, even if the agent behaves with a different policy. It can be
understood that a policy converges to an optimal value as long as it visits all state-behavior
pairs in the environment. Under these assumptions, Q learning always converges to Q∗

Watkins and Dayan [140]). The basic Q-learning algorithm is as follows.

4.5 Deep Q-Learning

The visual signals coming through the sensory organs that humans deal with every moment
are very large data. In order to treat such data rapidly, humans and animals have developed a
structure of the brain that can treat visual information quickly. This structure allows visual
information to be represented as a small representation of essential dimensions, and humans
and other animals appear to behave in conjunction with this process of reinforcement learning
and similar hierarchical sensory processing systems ( Mnih et al. [93]). This section deals
with the Deep Q-network(DQN), one of the applications of reinforcement learning using
deep learning. This model was initially proposed to apply reinforcement learning algorithms
to real-time video game problems.

The problems addressed by DQN are the video games found on the Atari-2600 home
game console in the late 1970s. DQN aims to score simple games such as Breaking Bricks
and Pac-Man in the same way that humans enjoy the game with 8 directions and one button on
the game controller. The purpose of this study is to learn the manipulation of a human-level
direct controller using only the pixels of an image in a video game which requires deep
reinforcement learning. DQN trained deep convolutional neural networks with Q-Learning to
approximate behavior-state functions to learn the behavior of game controller manipulation.
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Initialize Q(s,a) arbitrarily;
repeat(for each episode)

Initialize s;
Choose a from s using policy derived from Q (e.g., ε−greedy);
repeat(for each step of episode)

Take action a, observe r, s
′
;

Choose a
′
from s

′
using policy derived from Q (e.g., ε−greedy);

Q(s,a)← Q(s,a)+α[r+ γQ(s
′
,a
′
)−Q(s,a)];

s← s
′
;a← a

′
;

until s is terminal;
until;

Fig. 4.6 Sarsa algorithm

Initialize Q(s,a) arbitrarily;
repeat(for each episode)

Initialize s;
repeat(for each step of episode)

Choose a
′
from s

′
using policy derived from Q (e.g., ε−greedy);

Q(s,a)← Q(s,a)+α[r+ γ max
a′

Q(s
′
,a
′
)−Q(s,a)];

s← s
′
;

until s is terminal;
until;

Fig. 4.7 Q-Learning algorithm
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Fig. 4.8 Schematic illustration of the convolutional neural network from ( Mnih et al. [94])

The structure of the DQN is shown in the figure. First, the network inputs are preprocessed
images in black and white corresponding to the recent four frames of 4×84×84. In this
way, DQN’s input processing method is to view four black and white images of the present
and the third previous frame as a Markov state representing all the information of the game.
The DQN then takes the pixels of this image, obtains a generalized representation of the
input through several convolutional layers, and then decides which action to perform with
the controller through several closely coupled layers. All activation functions are rectified
linear units(ReLU), and the error function of Q-Learning in this network is as follows.

Li(θi) = E(s,a,r,s′)˜U(D) =

[(
r+ γ max

a′
Q(s′,a′;θ

−
i )−Q(s,a;θi)

)2
]

(4.3)

In the above formula 4.3, θi is a parameter of the current DQN. θ
−
i is the target network

that DQN is trying to reach and is assigned to θi at certain stages for convergence. For
exploration and usage, we used an ε−greedy method that takes random behavior instead of
the highest Q function with a probability as high as ε and gradually close to 0.

One of the features of DQN is that it uses heuristic replay. This saves the current state,
behavior, compensation, and transitions of the next state in large memory, then randomly
selects samples of data for min-batch in the learning phase. There are many reasons for doing
an experience replay. The first reason is that the experience of each step is potentially used
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for many weight updates, which can increase the efficiency of the data. The second reason is
that learning directly from consecutive samples is inefficient because the correlation between
the samples is strong. Finally, using experiential replays, the distribution of behaviors is
averaged over many previous states, making learning smooth. The overall algorithm is as
follows.

The algorithm is described in detail as follows. After initializing the memory and
parameters containing the replay experience, the game is run with a game emulator. Every
hour, we assign the current action at to ε−greedy, which is the highest Q function value in
DQN. After this is done, the current state, behavior, reward, and next state are stored in replay
memory. On the other hand, learning is performed by randomly extracting a mini-batch from
the replay memory and updating it using Q-learning, and allocating a target network to the
current network with constant cycle.

As a result, DQN reported successful performance in games that require immediate
situational judgment and manipulation. In particular, when tested in 49 real-world Atari-2600
games without changing the network structure and learning style, DQN outperformed the
existing algorithms in all 49 games and exceeded the human level in 29 games. In this way,
DQN has demonstrated that human-level manipulation can be achieved using deep learning
and reinforcement learning algorithms.

However, if you need some knowledge of the symbols which are commonly used, if
you have short-term and long-term goals that do not hold MDP assumptions, and if there
are games that are difficult to explore with a simple ε−greedy, it is known that the DQN
algorithm does not work well.

4.6 Conclusion

Let us review reinforcement learning again. At lunch time we go out to eat. The sandwich
shop where I usually go to is closed for construction, and the small brasserie, which is famous
for its deliciousness, cannot go in because there are too many customers. While hesitating,
time passes and we get more and more impatient. We check today’s recommendations
and prices at a Lebanese restaurant located in a side street just one block away. Then we
search this restaurant on TripAdvisor and check the ratings and comments before making
a decision. We use two methods of communicating with the environment: observation and
action. Observation is looking at the environment through the sense perception. After the
information of the closed sandwich shop and the brasserie filled with guests is delivered to
the brain, we revise the original plan. We explore the back streets anew but new information
causes interference in the brain’s cognitive system. However, the final decision is made
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after analyzing the reward effects (price, rating, valuation) of the new challenge. We learn
the environment based on incomplete observations. Once a model of the environment has
been created, it should be used to select optimized behaviors that are as close to the target as
possible from the various possible methods in the current situation. Once you’ve decided
what to do, it’s time to execute it and to repeat the changes in real time.

Reinforcement learning relies on behavioral rewards and changes in state, but linked with
embodied cognition. Unlike conventional information processing approaches, it is to see
the recognition as a dynamic system that changes with time without intervening symbolic
units or representations. Reinforcement learning collects and learns data on its own as agents
interact with the environment. Thus, reinforcement learning is closer to human cognitive
behavior than other supervised or unsupervised learning. In this paper, we will simulate the
process of finding the optimal solution using reinforcement learning in Chapters 7 and 8.
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Initialize replay memory D to capacity N;
Initialize action-value function Q with random weights;
for episode=1,M do

Initialize state st ;
for t=1,T do

With probability ε select a random action at ;
otherwise select at = max

a
Q∗(st ,a;θ);

Execute action at and observe reward rt and state st+1;
Store transition (st ,at ,rt ,st+1) in D;
Set st+1 = st ;
Sample random minibatch of transitions (st ,at ,rt ,st+1) from D;

Set y j=

{
r j, for terminal st+1.

r j + γ max
a′

Q(st+1,a′;θ), for non-terminal st+1.
;

Perform a gradient descent step on (y j−Q(st,a j;θ))2;
end

end

Fig. 4.9 Deep Q-Learning with Experience Replay Pseudo Algorithm
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Experiment and Simulation
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Chapter 5

The effects of gesture in Tower of Hanoi

In this chapter, we will emphasize the embodied perspective by exploring the role of gestures
in problem solving. According to our hypothesis, although the use of gestures and gesture
strategies are rough and inaccurate, gestures affect memory and planning of learning process.
In other words, the more the individual interacts with the environment through gestures, the
more the individual’s cognitive interaction ability is improved. To evaluate this hypothesis,
we studied the influence of gestures on cognition in solving the tower of Hanoi problem.
Participants are consisted of the blinds sighted people. Participants are given the task of
solving the problem of the Tower of Hanoi with four discs. The first experiment had to solve
the Tower of Hanoi with four discs, and the other had to solve the Tower of Hanoi without
the disc.

In our experiments, we obtained the following data: total duration, number of gestures,
number of deictic gestures, as well as data on the number of illegal gestures, and so on.
According to the data, when solving the Tower of Hanoi without any disk, sighted participants
used deictic gestures to recall the process of solving with disc in the first experiment. For
blind participants, gesture interactions played a key role in solving the TOH problem. 1

5.1 Introduction

According to the embodied approach of cognition ( Anderson [2], Lakoff and Johnson [75],
Wilson [143], Barsalou [8]), cognitive processes are deeply related to physical interactions
that affect our thinking, reasoning, and decision making. As the body is part of the causal
relationship that enables perceptual interaction, the main goal of the study of embodied

1Sanghun, B., Mathilde, M., François, J. and Charles, T. The effects of gesture in Tower of Hanoi. In the
2nd Eurasian conference on educational innovation 2019 (ECEI-2019): Papers submitted to this conference.
Adopted but not participated.
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cognition is to understand the intellectual behavior of cognition and behavior related to the
movement of the body. Embodied cognition seems to have a lot of contributions to our
understanding of the nature and of the influence of gestures. In the literature on embodied
cognition, gestures are often used as a grounding for a mapping between idea and an object
in the world, to make the meaning clearer (Harnad [56],Lakoff and Johnson [75], Lakoff and
Nuñez [76]).

As the recent research shows, the effect of the gesture is to increase the problem solving
ability by decreasing the working memory ( Cook et al. [36]). Let us take another example.
We often use our hands when we talk. This is a cognitive action to convey what the speaker
is trying to say more clearly ( Hostetter et al. [61]). In addition, gestures in infancy are used
to convey concepts which are not yet implemented in language ( Singer and Goldin-Meadow
[130]).

Therefore, in this chapter, we asked participants to solve the Hanoi Tower puzzle to
observe the effect of gestures on cognitive processes (learning, memory, planning, decision
making, etc.). The rules of the Tower of Hanoi puzzle are simple. There are three rods and a
number of disks in different sizes. Disks are stacked on one rod. The goal is to move all the
disks from one rod to the other.

We can only move one disk at a time and we can’t put a large disk on a small disk. We
also asked participants to solve the Tower of Hanoi problem without disks. Participants have
to solve the problem without disk by imagining moving the disk in their heads. In this case,
the participants should verbally explain the solution to the supervisor. The Tower of Hanoi
problem solving depends on the presence of the disk is to compare and analyze gestural
effect in correlation between visual effect and cognition. In this chapter, we also compared
planning performance depending on the presence of a disk.

5.2 Experiment: Observing blind and sighted participants
solving the Tower of Hanoi problem

5.2.1 Participants

We recruited 14 participants (average age 41, standard deviation 8.51). The blind group and
the sighted group consisted of six females and one male, respectively. The average age of
blind group was 39 years with a standard deviation of 6.65. The average age of sighted group
is 43 years with the standard deviation 10.30.
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5.2 Experiment: Observing blind and sighted participants solving the Tower of Hanoi
problem

Fig. 5.1 A participant performing Tower of Hanoi with disk

5.2.2 Procedure

We tested each participant individually. Before the game began, participants were asked
to learn the rules and then solved the problem. The blind participant was given the same
explanation as the sighted participant but gave additional explanation for problem solving.
Participants were asked to resolve a TOH with 4 disks and we recorded everything in the
process (Fig. 5.1). After the first experiment, the participants were asked to solve the TOH
problem without the disk. As in the first experiment, all problem solving procedures were
recorded. In the second experiment (Fig. 5.2), the basic premise was that although the disks
were not visible, all four disks were stacked on the left disk. When the participants moved
the disk, we asked them to explain which disk they were grabbing and where to move it.

5.2.3 Coding

With information about the recorded gesture behavior, we classified the experimental data.
Appendix A summarizes the experimental results for the blind group and the sighted group.
As shown in tables A.1 and A.2, the data consists of two qualitative and 16 quantitative
variables. Two qualitative variables consist of conditions and groups. The group variable has
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Fig. 5.2 A participant performing Tower of Hanoi without disk

already been mentioned above, and the condition variable is divided into whether the disk is
used or not. Here we classify 16 quantitative variables as follows:

• Average time between two gestures in the first experiment (A)

• Average time between two gestures in the second experiment (B)

• Average gesture time in the first experiment (C)

• Average gesture time in the second experiment (D)

• Total time in first experiment (E)

• Total time in second experiment (F)

• Number of strokes in the first experiment (G)

• Number of strokes in the second experiment (H)

• Number of deictic gestures in the first experiment(I)

• Number of deictic gestures in the second experiment(J)

• Number of gestures in the first experiment(K)
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• Number of gestures in the second experiment(L)

• Number of interaction gestures in the first experiment(M)

• Number of interaction gestures in the second experiment(N)

• Number of incorrect gestures in the first experiment(O)

• Number of incorrect gestures in the second experiment(P)

Among the classified data from above, we would like to know the classification criteria
of ’deictic gesture’ and ’interactive gesture’. Deictic gesture is a co-verbal gesture with the
hand pointing to the object. It helps us to understand the participants’ attention towards a
specific referent in the proximal or distal environment ( Cochet and Vauclair [32]). Deictic
gestures and their meanings are affected by physical appearance, movement, and the distance
between the gesture and the object. We often understand deictic gesture as what is commonly
referred to as hand.

We called interaction gesture, a gesture with the hand comprising the gesture of moving
disk as well as the gesture of touching. We suppose that the interaction gestures are influenced
by experience and learning.

5.3 Method and Analysis

ANOVA is used to analyze the data obtained from the experimental results of the blind and
sighted groups. This method is useful for investigating the significance of the effects of
factors that can influence the Hanoi Tower problem solving. The two-factor ANOVA model
is written as follows:

Xi jk = ȳ+αi +β j +(αβ )i j + εi jk (5.1)

where

• ȳ, overall mean response (Grand mean)

• αi, the treatment effect for the i-th category of the row variable

• β j, the tratement effect for the j-th category of the column variable

• (αβ )i j, the interation effect for the combination of the i-th row category and the j-th
column category
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Therefore, to investigate the effect of gesture between groups or conditions, a two-way
analysis of variance (ANOVA) was performed. ANOVA included two conditions (with disk
and without disk) and two groups (sighted and blind participants) as factors. The dependent
variables included reaction time taken at first attempt (Trial 1), time taken at second attempt
(Trial 2), number of deictic gestures on first attempt (Trial 1), number of deictic gestures on
second attempt (Trial 2), number of gesture interaction on first attempt (Trial 1), and number
of gesture interaction on second attempt(Trial 2).

5.3.1 The effect of deictic gesture

First of all, we applied two-way analysis of variance(ANOVA) to measure the relevance
of the deictic gesture by factors (Condition and Group) when applicants solve the Hanoi
Tower puzzle for the first time. Let us examine the results for the number of deictic gestures
by the factors in our first attempt at solving the Tower of Hanoi. In the participants’ first
attempts at solving TOH, the conditional factor had a significant impact on the deictic gesture
F(1,24) = 5.8161, p = 0.02389.

In order to verify the interaction on the effect of deictic gesture on the first attempt,
we set the null hypothesis for the interaction of group and condition to be "there is no
interaction between the condition level and group". The alternative hypothesis, on the other
hand, is that "there is an interaction between the condition level and the group". The test
statistic is F(1,24) = 0.65 and the p.value is larger than 0.05 (p = 0.4294). Therefore, at
the significance level of 5%, we accept the null hypothesis and conclude that there is not
a significant interaction between the condition level and the group for the effect of deictic
gesture on the first try.

Now, let us examine the results for the number of deictic gestures by the factors in
our second attempt at solving the Tower of Hanoi. In the second trial, the results of the
ANOVA analysis on the number of deictic gestures showed a significant effect not only on
the conditions F(1,24) = 9.3364, p = 0.005436, groups F(1,24) = 9.3364, p = 0.005436,
but also on the condition-group interaction.

In order to verify the interaction on the effect of deictic gesture on the second attempt, we
set the null hypothesis for the interaction of group and condition to be "there is no interaction
between the condition level and group". The alternative hypothesis, on the other hand, is
that "there is an interaction between the condition level and the group". The test statistic is
F(1,24) = 0.65 and the p.value is less than 0.05 (p = 0.4294). Therefore, at the significance
level of 5%, we reject the null hypothesis and conclude that there is a significant interaction
between the condition level and the group for the effect of deictic gesture on the second try.
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Table 5.1 Deictic gesture between group and condition (Average)

Group Number of deictic gestures(Trial 1) Number of deictic gestures(Trial 2)
Overall With disk Without disk Overall With disk Without disk

Sighted 6.5714 0 13.1429 6.7857 0 13.5714
Blind 3.2857 0 6.5714 1.1429 0 2.2857

More specifically, a Tukey post-hoc analysis was performed to determine which mean
pairs were significant. The figure 5.3 shows Post-hoc t-test’s result. This result shows the
significant effect of dictic gestures, as revealed by two-way ANOVA followed by a Tukeys
post hoc comparison.

Table 5.2 Tukey post-hoc comparison for the effect of deictic gestures (Try2)

Groups difference Lower confidence Upper confidence Adjusted
being compared in means interval interval p-value
1:4-2:4 2.285714e+00 -7.837285 12.408713 0.9237264
2:3-2:4 1.903239e-16 -10.122999 10.122999 1.0000000
1:3-2:4 1.357143e+01 3.448429 23.694428 0.0057843
2:3-1:4 -2.285714e+00 -12.408713 7.837285 0.9237264
1:3-1:4 1.128571e+01 1.162715 21.408713 0.0249215
1:3-2:3 1.357143e+01 3.448429 23.694428 0.0057843

1: Without disk, 2: Disk, 3: Sighted participants, 4: Blind participants

The results presented in the table 5.2 give the difference in mean, confidence level, and
adjusted p-values for all possible pairs. The interactions post hoc tests compare each pair
of combinations. This shows that there is a significant difference (p = 0.0058) between
participants with the sighted participants solving diskless problems and those with the blind
participant solving problems with disks. It also shows that there is a significant difference
(p = 0.025) when the sighted participants solve the diskless Hanoi Tower problem and when
visually impaired participants solve the Diskless Hanoi Tower problem. In addition, for the
sighted participants, there is a significant difference (p = 0.0058) depending on the presence
of a disk.

5.3.2 The effect of gesture interaction

As in the previous section, we applied two-way ANOVA in order to analyze the effects of
interactive gestures. Let us examine the consequences of the effect of interactive gestures on
the first attempt at problem solving in the Tower of Hanoi. When participants first solved the
Tower of Hanoi problem, conditional factors F(1,24) = 21.32, p = 0.0001 and condition-
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Fig. 5.3 Effect of deictic gesture between group and condition.**p<0.01: Significant effect
of deictic gesture (Sighted participant without disk versus Blind participant with disk) as
revealed by two-factor ANOVA followed by Tukey’s post hoc comparisons. **p<0.01: Sig-
nificant effect of deictic gesture (Sighted participant without disk versus sighted participant
with disk) as revealed by two-factor ANOVA followed by Tukey’s post hoc comparisons.
*p<0.05: Significant effect of deictic gesture (Sighted participant without disk versus blind
participant without disk) as revealed by two-factor ANOVA followed by Tukey’s post hoc
comparisons.

Table 5.3 Gesture interaction between group and condition (Average)

Group Number of gesture interaction(Trial 1) Number of gesture interaction(Trial 2)
Overall With disk Without disk Overall With disk Without disk

Sighted 6.5 9.42858 3.5714 5.2143 7.8571 2.5714
Blind 10.5 20.1429 0.8571 7.7143 14.4286 1

group interactions factor F(1,24) = 6.08, p = 0.02 had a significant impact on interaction
gestures.

In order to verify the effect of the interaction gesture on the first attempt, we set the
null hypothesis for the interaction of group and condition: "There is no interaction between
the condition level and the group". The alternative hypothesis, on the other hand, states
that there is an interaction between the condition level and the group. The test statistic is
F(1,24) = 6.08 and the P value p = 0.0212 is less than 0.05. Therefore, at the significance
level of 5%, we reject the null hypothesis and conclude that there is a significant interaction
between the condition level and the group.

More specifically, a Tukey post-hoc analysis was performed to determine which mean
pairs were significant. The figure 5.4 shows Post-hoc t-test’s result. This result shows the
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significant effect of interactive gestures, as revealed by two-way ANOVA followed by a
Tukeys post hoc comparison.

Table 5.4 Tukeys post-hoc comparison for the effect of interactive gestures (Try1)

Groups difference Lower confidence Upper confidence Adjusted
being compared in means interval interval p-value
1:4-2:4 -19.285714 -29.906584 -8.66484502 0.0002240
2:3-2:4 -10.714286 -21.335155 -0.09341645 0.0474722
1:3-2:4 -16.571429 -27.192298 -5.95055931 0.0013050
2:3-1:4 8.571429 -2.049441 19.19229784 0.1447657
1:3-1:4 2.714286 -7.906584 13.33515498 0.8941129
1:3-2:3 -5.857143 -16.478012 4.76372641 0.4409476

1: Without disk, 2: Disk, 3: Sighted participants, 4: Blind participants

Regarding the effects of interactive gestures, it can be seen that there are significant
differences (p = 0.0002) between the blind participants in solving the tower of Hanoi with
disk and without disk. There is also an important difference (p = 0.0474) between the case
where the sighted participants solve a problem with a disk and the blind participants solve a
problem with a disk. Finally, it can be seen that there are significant differences (p = 0.0013)
between the sighted participants solving without a disk and the blind participants solving
without a disk.

Let us examine the consequences of the effects of interactive gestures in the second
attempt at solving the Tower of Hanoi. In this case, the results of the ANOVA analysis
with respect to the number of interaction gestures showed only significant effects about the
condition F(1,24) = 14.88, p = 0.0008.

Therefore, the second attempt concludes that there is no significant interaction between
the condition level and the group with respect to the interaction gesture at the significance
level of 5%.

5.3.3 Discussion

When the sighted participants solved the Tower of Hanoi problem without disk, they made
use of their deictic gestures regardless of the number of attempts. Some participants had
difficulty remembering the process of solving the Hanoi Tower problem without a disk. As
can be seen from the experiments, participants who had difficulty finding answers tried to
communicate with the environment (disks, columns) through their gestures. Therefore in
other cases such as solving the Hanoi Tower problem without the disks, we have to imagine
that they are in front of me like a mental representation. As if we imagine something that
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Fig. 5.4 Effect of gesture interaction between group and condition.***p<0.001: Significant
effect of gesture interaction (Blind participant without disk versus Blind participant with disk)
as revealed by two-factor ANOVA followed by Tukey’s post hoc comparisons. **p<0.01:
Significant effect of deictic gesture (Sighted participant without disk versus Blind participant
with disk) as revealed by two-factor ANOVA followed by Tukey’s post hoc comparisons.
*p<0.05: Significant effect of deictic gesture (Sighted participant with disk versus blind
participant with disk) as revealed by two-factor ANOVA followed by Tukey’s post hoc
comparisons.
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doesn’t actually exist in our senses. Deictic gestures are then used as grounding for mapping
between imagined objects and actions. Therefore, this deictic gesture helps you remember
what they did in previous attempts.

But does using deictic gestures help solve the Hanoi Tower problem faster? Of course
not. This is because the number of deictic gestures used in the first trial is correlated with the
total time spent in the first trial [r = .44, p < 0.019]. Deictic gestures helped to find previous
memories but did not reduce total time. We can also see that when we first solve the Hanoi
Tower problem, the number of directed gestures has a weak correlation [r = .298, p > 0.1] to
the total time required when we solve the puzzle for the second time. When the participants
solved the problem for the second time, this gesture helped a little, but it did not have a big
correlation overall.

On the other hand, the blind participants interact with the environment not with their eyes,
but with their hands. Interactive gestures that touch or rotate disks provide action information
to their mental representations. For this group, the number of interaction gestures in the
second attempt correlates with the total duration in the second attempt [r = .496, p < 0.0072].

In this study, we found that the sighted participants use more deictic gestures, while the
blind participants use more interactive gestures. The blind participants can see that they form
their mental representation by touching objects with their hands. On the other hand, the
sighted participants can refer to objects by hand to maximize their visual effects and form
a mental representation. What was unsatisfactory in this experiment was the difficulty in
drawing conclusions due to the small sample size. In addition, the Hanoi Tower problem was
solved twice, with and without a disk, but it would have been nicer if we tried more attempts.

5.4 General discussion and conclusion

When we solve a problem or a task, our brain captures states across modalities and integrates
them with a multimodal representation. Our brain then retrieves and executes the memory
associated with the previous simulation. In this section, we performed two experiments
(Tower of Hanoi problem with or without disk) to test the effect of the gesture on the planning.
Participants were asked to solve the Tower of Hanoi without disk after solving the Tower of
Hanoi with disk.

Our results show that in the absence of discs, participants have difficulty visual sim-
ulations. Since visually perceived objects automatically trigger simulations of functional
actions, such as grabbing or moving objects. As participants have a difficulty triggering
simulations without visual objects, deictic gestures of the sighted participants play a central
role in generating visual inferences. Meanwhile, the blind participants have difficulties
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solving Tower of Hanoi because of the lack of tactile objects. The interactive gestures for
these participants play an important role in building their mental representation.

In spite of the lack of samples, the more the user interacts with the environment through
gestures, the more the individual’s cognitive ability increases. In the introduction we tried to
understand the embodied perspective by exploring the role of gestures in problem solving.
Then, I would like to reconstruct this experiment from the embodied point of view. It is also
worth considering an experiment to see the effect of vision and touch on problem solving by
changing the color of the disk or by changing the sense of touch depends on the size of the
disk.
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Chapter 6

Solving the Tower of Hanoi using Neural
Network approach

6.1 Introduction

In this chapter, we propose a reasoning solution to infer the rules of a game such as the Tower
of Hanoi. Neural networks require a large amount of data to improve their performance. But
humans don’t need much data for learning. If we can solve the Tower of Hanoi with four
discs, the ten discs can be easily solved as well. It is because we know the rules. But if
Artificial Intelligence doesn’t know the rules of the game, it will take a lot of effort and time
to learn the Tower of Hanoi with 10 disks. Therefore, the goal of this chapter is to find out
how to solve the Tower of Hanoi without much learning.

From a psychological point of view, the reasoning of human being can be considered
as the process of drawing conclusions. Human beings’ endeavors to solve problems or to
make decisions are goal-oriented ( Leighton and Sternberg [81]). Reasoning has long been
regarded as exclusive domain of the human being. It was one of the most difficult areas
to implement mechanically. Because we need to understand contextual meanings, such as
texts and images, and we have to consider contextual relationships that change depending
on the situation, even with the same information. Therefore, reasoning has received a lot of
attentions in the last few decades ( Minsky [90], Mueller [96]). In recent years, advances in
deep learning, especially the evolution of learning algorithms, are leading to rapid research
and development of artificial intelligence in the field of reasoning ( Kumar and others [74]).

We will present three models for reasoning in this chapter. First, we would like to
present the process of solving the Hanoi Tower problem using a multi-layer perceptron
neural network, one of the artificial neural network algorithms. After that, we will use neural
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Fig. 6.1 Association Between rain and umbrella

association model and relational network model which are nonlinear models for probabilistic
reasoning. The neural association model measures the probability of association of event
2 (E2) occurring under the conditions of event 1 (E1), P(E2|E1) . For example, we look
at the picture 6.1 below. We can infer that event E2, which can be deduced in case of rain
event E1, is most likely an umbrella. Based on these probabilistic inferences, we would like
to deduce the Hanoi Tower solution. Meanwhile, the relationship network model will also
utilize a learning neural network to infer about different objects and their relationships.

Publications related to this chapter are :

1. Sanghun, B. Solving the Tower of Hanoi using Neural Network approach. In Interna-
tional Conference on Machine Learning and Soft Computing (ICMLSC 2017), 2017.
Ho chi minh, Viet Nam

2. Bang, S., Tijus, C. Neural Network-Based Reasoning for Solving the Tower of Hanoi.
In the Proceedings of The Eleventh International Conference on Advanced Cognitive
Technologies and Applications COGNITIVE 2019, 2019. Venice, Italy.

6.2 Reasoning model

6.2.1 Multi-Layer Perceptron Model

As shown in the figure 6.2, the simple form of the feed-forward neural network was a simple
form with one input layer on the left and one inner layer and one output layer.

Like the simple perceptron, the multilayer perceptron consists of a hidden layer, an output
layer, a weight, and biases, but the number of hidden layers has two or more.
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INPUT LAYER

HIDDEN LAYER

OUTPUT LAYER

Fig. 6.2 Model of Multilayer perceptron for Tower of Hanoi

First, in order to build the Hanoi Tower Learning Model, we placed the data to be trained
on the input layer, and performed iterative learning to output the most suitable value for the
desired result by adjusting the weight and bias values in the hidden layer.

We used 28 sample training sets with 4 disks to solve the Tower of Hanoi puzzle. This
sample data was obtained from the participants in the previous chapter. Each sample consists
of 12 elements of vectors. It consists of three discs and three columns. The first input vector
(1111 0000 0000) means that all four disks are in the first peg (Table 6.1). The leftmost 1 is
the disk located at the top of peg A. If this input vector is presented, the model of multilayer
perceptron will learn the output vector (100 010) for the initial input vector. What this output
vector means is to move the disk located at the top of the left peg to the middle peg. This
model trains repeatedly the pairs of input and output practice data. This repetitive neural
network learning is a model to find the rule of The Tower of Hanoi.

Table 6.1 One example of training data set for multi-layer neural network model

Input Output
1 (1111 0000 0000) (100 010)
2 (0111 0001 0000) (100 001)
3 (0011 0001 0001) (010 001
4 (0011 0000 0011) (100 010)
5 (0001 0001 0011) (001 100)
6 (0011 0001 0001) (001 010)
7 (0011 0011 0000) (100 010)
8 (0001 0111 0000) (100 001)
9 (0000 0111 0001) (010 001)
10 (0000 0011 0011) (010 100)
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Table 6.2 Confusion Matrix

Actual Values

Predicted Values True False

True True Positive False Positive
False True Negative False Negative

We performed the accuracy and ROC(Receiver Operation Characteristic) analysis of each
model to test the model suitability of the multi-layer perceptron artificial neural network.
Accuracy refers to the ratio of how many samples predicted that my algorithm is the correct
answer among the total number of samples are included. Accuracy analysis is to measure the
actual predictive accuracy of our model.

In the end, the factor that evaluates the model can be defined as the relationship between
the answer presented by the model and the actual answer. If the correct answer is divided into
True and False, and the classification model also provides a value of True false As shown in
Table 6.2 below, the case can be divided into 2×2 matrix.

Now if we look at each case:

• True Positive (TP): Predict the true answer as true (correct answer)

• False Positive (FP): Predict the correct answer that is actually false as True (Incorrect
answer)

• False Negative (FN): Predict the correct answer that is true as false (incorrect answer)

• True Negative (TN): Predict the correct answer that is actually false as false (correct
answer)

6.2.2 Neural Association Models

Neural relationship models also focus on the association with objects. Take the example of
the image mentioned earlier. If we see rain through the window, the probability of carrying
an umbrella increases as we go out. In this case, the keywords of the relationship become
rain. In the previous section, let us say event E1 is three disks being stacked on the left at
the initial state t = 0. Let us say E2 is the case that lifts the smallest disk and moves it to the
right. peg1 contains disks, and the smallest disk is on the second smallest disk, indicating
the relationship between events e1 and e2. Given a pair of inputs, E1 = (ei,rk), we find the
conditional probability Pr(E2|E1) to find E2 = (e j) (Figure 6.3). In other words, when the
triplet Xn = (ei,rk,e j) is given, the prediction value yn is obtained.
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Fig. 6.3 Structure of Neural Association Model

Fig. 6.4 Association in Deep Neural Networks
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Let us look at Figure 6.4 for a closer look. Given a triple Xn = (ei,rk,e j), the vectors
v(1)i (∈V (1)) and v(2)j (∈V (2)) are embedding the entities ei and e j respectively. The relation

rk is represented by a vector ck ∈C (all relations). The input is z(0) = [v(1)i ,ck]. During the
process, we have:

a(l) =W (l)z(l−1)+bl(l = 1, ...,L)
z(l) = h(a(l)) = max(0,a(l))(l = 1, ...,L)

where W (l) : Weight matrix and bl : bias for layer l

We calculate a sigmoid score for each triple xn :

f (xn;Θ) = σ(z(L)̇v(2)j ), Where σ(x) = 1/(1+ e−x)

All network parameters of this structure is represented as Θ = {W,V (1),V (2),C}
Our hypothesis is that we can infer the rules of the game not through the description

of rules of the game, but through the movement of the hand the disc. Therefore, we study
this problem solving through the action of others and the change of states. To solve the
problem of tower of Hanoi, we make use of machine learning methodology. We develop an
intelligence that learns and infers the rules of the game by supervised learning for neural
network. Based on the understanding of rules, the intelligence finds also an optimal solution
by means of reinforcement learning method. Finally, we show that the artificial intelligence
leans the problem of Tower of Hanoi from the movement of body, behaviors, and the change
of states. 1

6.2.3 Relational Network Model

As mentioned in the previous chapter, only one disk can be moved at a time, and the disk
can only be moved if it is the top disk on a pile (See Figure 6.5). Also a larger disk cannot
be placed on a smaller disk. From the rules of the game, we can infer the behavior of
the participants. How can we make such an inference without any information about the
rule of game? The relational model we present was inspired by Interaction Networks (INs)
( Battaglia et al. [12]) and Relation Networks (RNs) ( Raposo and others [120]). These
models, which have a neural network architecture, are very helpful for inference learning by
observing objects and their relationships and behaviors.

In a similar way to the relational network ( Raposo and others [120]) model, our model
infers the rules of the game based on the relationship R between objects. Based on the data

1Sanghun, B. Solving the Tower of Hanoi using Neural Network approach. In International Conference on
Machine Learning and Soft Computing (ICMLSC 2017), 2017.
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Fig. 6.5 The smallest disk in the four is at the top, and participant grabs it and moves it.

we obtained, we constructed the relationship between objects (including R, r elements) to the
location of the objects and the inclusion relations between them. For example, in the initial
state of t = 0, the smallest disk is in contact with the second smallest disk, the smaller disk is
above the larger disk, and the larger disk is below. The Hanoi Tower with three disks has
encoding properties such as object location (bottom and top) and containment relationships.
Thus, six objects (three disks and three pegs) each have three encoding attributes.

We can express the smallest disk like this, o1 = (obeneath
1 ,oon

1 ,oinclusion
1 ). We are generally

interested in models defined by the form of function composition f ·g, where f is a function
that returns the predicted value y. The function gψ is defined to operate on a particular
factorization of D (ex: gψ(D)≡ gψ(o1

1,o
2
1, ....,o

1
i , ...,o

n
m)).

As shown in the figure 6.6, the second smallest disk is in contact with the smallest disk.
In this case, it is associated with the second smallest disk below the smallest disk. In other
words, gψ(o1,o2) = beneath(o1,o2). However, no disc is on top of the smallest disc. For
inclusion, we define that peg1 contains four disks, and peg2 and peg3 do not contain any
disks.

Fig. 6.6 Model of Relational Network

After all, the model we want to predict is given by y = fφ (∑i, j gψ(oi,o j)), where fφ And
gψ is a multi-layered perceptron. We train to optimize the model. Finally, our model gives
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the probability of whether the disk can be moved in different situations. In other words, we
want to train the model with three disks and test the prediction and accuracy of four disks.

6.3 Simulation

6.3.1 Experiment: Multi-Layer Perceptron Model

The multilayer perceptron model is the most basic implementation of the Depp neural
network. This is presented as one of the most basic modeling methods for learning the rules
of Tower of Hanoi. Participants’ learning data were extracted from the previous experiment.
As mentioned in the section 6.2.1, data coding was performed to learn a multilayer neural
network model. (Full data are listed in the appendix) Of these data, 80% were reserved for
training and 20% were classified as data for prediction and evaluation.

In this simulation, a trial and error method was applied to calculate the number of hidden
layers and the number of nodes. We used the ReLU function for the activation functions of
the input and hidden layers, and the sigmoid function and the tanh function for the output
layer.Previously, sigmoid and tanh activation functions were used extensively for all layers.
However, in recent AI implementations, we are using the ReLU activation function. Since
we were able to get better performance with this activation function ReLU.

Table 6.3 Model performance with the Multi-Layer Perceptron Model (12 input layers, 5
hidden layers and 7 output layers)

Index Net.name Training accuracy Test accuracy Area Under ROC learning rate
1 MLP 12-5-7 0.875444889 0.866359413 0.799283154 0.1
2 MLP 12-5-7 0.874936461 0.875575960 0.788530465 0.2
3 MLP 12-5-7 0.871377826 0.867895544 0.799283154 0.3
4 MLP 12-5-7 0.873411298 0.870967686 0.795698924 0.4
5 MLP 12-5-7 0.874936521 0.870967686 0.792114695 0.5
6 MLP 12-5-7 0.874936521 0.861751020 0.799283154 0.6
7 MLP 12-5-7 0.873919725 0.870967686 0.777777778 0.7
8 MLP 12-5-7 0.872902870 0.860214949 0.781362007 0.8
9 MLP 12-5-7 0.871377826 0.858678937 0.784946236 0.9

The first MLP (See Table 6.3) was used by employing 12 input layers, 5 hidden layers
and 7 output layer and the second (See Table 6.4) used 12 input layers, 10 hidden layers and
7 output layer. For each model, the accuracy and AUROC values according to the change in
learning rate were compared and analyzed.
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(a) Learning rate=0.1 (b) Learning rate=0.2 (c) Learning rate=0.3

(d) Learning rate=0.4 (e) Learning rate=0.5 (f) Learning rate=0.6

(g) Learning rate=0.7 (h) Learning rate=0.8 (i) Learning rate=0.9

Fig. 6.7 Model loss according to the learning rate of multilayer perceptron model(12 input
layers, 5 hidden layers and 7 output layers)

In the case of the first model, Figures ?? and 6.8 show the model’s accuracy and loss
when the number of training is set to 500. On average, the training accuracy is 87 percent
and the test data accuracy is 86 percent. When the learning rate is 0.1, it converges at loss
0.35, and when the learning rate is 0.7, it converges at 0.30. In the case of accuracy and loss,
it can be seen that when the number of learning reaches 30-40 times, the accuracy and loss
of the data do not increase any more and stabilize.

We also presented the results of the ROC analysis in Figure 6.9. The larger the value
of the area under the curve, the better the model performance. Therefore, in the case of the
first MLP model, 12-5-7, it can be seen that the lower the learning rate, the higher the model
performance.

In the case of the second model, MLP12-10-7, like the first model, the training accuracy
is 87% and the accuracy of the test data reaches 86%. Also, the graph of accuracy and loss
follows roughly the same increasing trend and stabilization. However, in the case of ROC
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(a) Learning rate=0.1 (b) Learning rate=0.2 (c) Learning rate=0.3

(d) Learning rate=0.4 (e) Learning rate=0.5 (f) Learning rate=0.6

(g) Learning rate=0.7 (h) Learning rate=0.8 (i) Learning rate=0.9

Fig. 6.8 Model loss according to the learning rate of multilayer perceptron model(12 input
layers, 5 hidden layers and 7 output layers)
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(a) Learning rate=0.1 (b) Learning rate=0.2 (c) Learning rate=0.3

(d) Learning rate=0.4 (e) Learning rate=0.5 (f) Learning rate=0.6

(g) Learning rate=0.7 (h) Learning rate=0.8 (i) Learning rate=0.9

Fig. 6.9 ROC curves according to the learning rate of multilayer perceptron model(12 input
layers, 5 hidden layers and 7 output layers)
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analysis, it can be seen that the performance of the model is superior to that of the first model.
In general, there is no significant difference in the error range, but the performance of the
model is better than the case of 5 cases with 10 hidden layers. It can be seen that the smaller
the learning rate, the better the performance.

Table 6.4 Model performance with the Multi-Layer Perceptron Model ( 12 input layers, 10
hidden layers and 7 output layers

Index Net.name Training accuracy Test accuracy Area under ROC learning rate
1 MLP 12-10-7 0.875444889 0.875576078 0.826164875 0.1
2 MLP 12-10-7 0.873411357 0.874039947 0.827956989 0.2
3 MLP 12-10-7 0.875444829 0.861751079 0.806451613 0.3
4 MLP 12-10-7 0.870869398 0.867895543 0.813620072 0.4
5 MLP 12-10-7 0.871886194 0.869431614 0.788530466 0.5
6 MLP 12-10-7 0.868835747 0.835637509 0.811827957 0.6
7 MLP 12-10-7 0.872394562 0.867895364 0.790322581 0.7
8 MLP 12-10-7 0.866293788 0.846390187 0.781362007 0.8
9 MLP 12-10-7 0.872394502 0.867895483 0.826164875 0.9

6.3.2 Experiment: Neural Association Models

Neural Association Model(NAM) measures the probability of correlation with event2 oc-
curring under the condition of event1. Consider the case of the Tower of Hanoi, which
has three disks. In the initial state, there are three disks in peg A The largest disk is at the
bottom and the smallest disk is at the top. These conditions can be assumed to be event1.
Under these conditions of event1, a correlation with event2 is formed, which means that the
smallest disk can be caught and moved to other empty pegs. The path of movement may
be peg B or peg C. This model has constructed a model that can predict the next behavior
by selecting the event with the highest probability in the case of various selections. This
model extends a Multi-Layer Perceptron model to a Deep Neural Network model so that the
correlation between events can be inferred and predicted. The NAM model was trained using
the stochastic gradient descend algorithm, and the hidden layers were tested between 1 and 5.
The head vector represents the state of the disk, the relation vector represents the resulting
behavior, and the relation vector configures the relationship between the two vectors. The
average training precision was 91% and the average test data precision was 82%.
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(a) Learning rate=0.1 (b) Learning rate=0.2 (c) Learning rate=0.3

(d) Learning rate=0.4 (e) Learning rate=0.5 (f) Learning rate=0.6

(g) Learning rate=0.7 (h) Learning rate=0.8 (i) Learning rate=0.9

Fig. 6.10 Model accuracy according to the learning rate of multilayer perceptron model(12
input layers, 10 hidden layers and 7 output layers)
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(a) Learning rate=0.1 (b) Learning rate=0.2 (c) Learning rate=0.3

(d) Learning rate=0.4 (e) Learning rate=0.5 (f) Learning rate=0.6

(g) Learning rate=0.7 (h) Learning rate=0.8 (i) Learning rate=0.9

Fig. 6.11 Model loss according to the learning rate of multilayer perceptron model(12 input
layers, 10 hidden layers and 7 output layers)
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Table 6.5 Coding for the Model of Relational Network

Index Disk
Relationship Inclusion

Action
Beneath On(=Over) Peg A Peg B Peg C

1 d1 1 0 3 0, 0 1
2 d2 1 1 3 0 0 0
3 d3 1 1 3 0 0 0
4 d1 1 0 2 1 0 1
5 d2 1 0 2 1 0 1
6 d3 1 1 2 1 0 0

6.3.3 Experiment: Relational Network Model

In the previous section, we trained the Hanoi Tower with 4 disks through the MLP model.
We tested the accuracy of the model with random test data and found that the model’s
performance reached a fairly high level. However, this model was a supervisor training
model.

If we want to solve the Tower of Hanoi problem with 5 or 10 disks, we have to code the
data again. Therefore, this Relational Network Model is a model that started with the idea of
how to infer the rules of the game without much coding of data. It is a model that infers the
rules of the game according to the relationship between objects. This makes inferences from
trained data when new training data are presented. As mentioned earlier, it is to infer possible
behavior through the location of objects and inclusion relationships between objects.

First, we coded the Tower of Hanoi with three disks. As shown in the table 6.5, index
1 is the initial state, and disk 1 is above disk 2, and it is in peg A with other disks. As
expressed in section 6.2.2, this state can be expressed as a relationship to an object as follows.
: d1 = (dbeneath

1 ,don
1 ,dinclusion

1 ).
Therefore, since the object d2 exists under d1, the value of "relationship" becomes true.

On the other hand, since there is no object above d1, the characteristic value of "on" is false.
And since peg A contains three disks, the value is 3, and since peg B and C do not contain
any disks, the value is 0. Therefore, in this state, the value of the action for disk1 is true. In
this way, the number of possible cases was coded and learned.

The model has 5 input units, one or two hidden layers and one output unit. There are
different neurons (5,10) in each layers. Rectified linear activation functions are used in
each hidden layer and a sigmoid activation function is used in the output layer, for binary
classification. Reasoning model with different architectural variations was trained to find
the rule of Tower of Hanoi. The model with different number of neurons reaches a cross
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(a) Initial state (b) First movement

Fig. 6.12 Solution acquired by human

entropy loss below 0.6. However, the fourth model (MLP:5 inputs, two hidden layers with
10 neurons, 1 output) performed well as compared to other models.

Fig. 6.13 Reasoning model with different number of neurons was trained to find the rule of
TOH.

As we can see in Figure 6.13 and Table 6.6, the test accuracy with 3 disks for the first
and fourth model are 95.24% and 100%, respectively. When we try to infer the rule of game
for The tower of Hanoi with 4 disks, we find our reasoning model achieves 75% prediction
accuracy for the first model and 96.67% for the fourth model.

6.4 Conclusion

As we experience, human reasoning and thinking do not require much learning data. Anyone
who can learn four discs does not go through tens of thousands of trials and errors to solve
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Table 6.6 Model performance for Tower of Hanoi with 3 disks (training) and 4 disks (predic-
tion)

Accuracy
Model training(%) prediction(%)

Five inputs (5 neurons), one hidden layer ( 5 neurons) 95.24 75
Five inputs (5 neurons), two hidden layers (5 neurons) 90.48 76.67

Five inputs (10 neurons), one hidden layer (10 neurons) 90.48 71.67
Five inputs (10 neurons), two hidden layers (10 neurons) 100 96.67

the Hanoi disc problem with 10 discs. We can generally apply other games as well. In games
like chess, Othello, Go, etc. we can infer some of the rules of the game just by watching. In
order to understand the rules of the game in more detail, we can improve our understanding
by getting feedback through conversations with supervisors or opponents. Of course, for
game efficiency and victory, strategic considerations are necessary. This is related to the
reinforcement learning we will learn in the next chapter. What we’ve noticed in this chapter
is to look at the properties, relationships, and behavior of objects to infer the laws of the
game just by looking at them. In this chapter, we performed the simulation of the Tower of
Hanoi using the relational network model and neural linkage model. Although the accuracy
and prediction did not reach 100 percent, we were able to reason about the rules with a fairly
high probability. In this chapter, the reasoning model is studied based on the simulation
model derived from such cognitive recognition. In the following chapters, we approach the
solution based on the more specific and extended cognitive model.
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Chapter 7

Problem solving using Recurrent Neural
Network based on the effects of gestures

Models of puzzle problem solving, such as Tower of Hanoi, are based on moves analysis. In
a grounded and embodied based approach of cognition, we thought that gestures made to
take the discs to one place and place them in another place could be beneficial to the learning
process, as well as to the modeling and simulation. Gestures comprise moves, but in addition
they are also prerequisites of moves when the free hand goes in one location to take a disc.
Our hypothesis is that we can model the solving of the Tower of Hanoi through observing
the actions of the hand with and without objects. We collected sequential data of moves
and gestures of participants solving the Tower of Hanoi with four dicks and, then, train a
Recurrent Neural Network model of Tower of Hanoi based on these data in order to find the
shortest solution path. In this paper, we propose a approach for change of state sequences
training, which combines Recurrent Neural Network and Reinforcement Learning methods.

Publications related to this chapter is :

1. Sanghun, B. and Charles, T. Problem solving using Recurrent Neural Network based
on the effects of gestures. 10th International Joint Conference on Computational
Intelligence (IJCCI2018), 2018.

7.1 Introduction

Embodied cognition ( Varela et al. [139]) deals with the study of thought and behavior.
Embodied cognition seems to have a lot of contributions to our understanding of the nature
and influence of gestures. Frequently in the literature on embodied cognition ( Nathan
[97]), gestures are used as a grounding for a mapping between idea and an object in the
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world, in order to make meaning easier to understand. The embodied cognitive approach
helps to understand the intellectual behavior of perception and behavior based on the body’s
movements, even if the body’s movements are inaccurate or rough.

In this chapter, participants were asked to solve the Tower of Hanoi puzzle (TOH)
to observe how gestures affect our perception process (learning, memorization, planning,
decision making). As like the Tower of Hanoi puzzle and missionaries-cannibals game,
these classic puzzle-solving problems have received plenty of attentions because they do not
include domain-specific knowledge. Therefore, it can be used to investigate basic cognitive
mechanisms such as search mechanisms and decision making ( RICHARD et al. [122]).

Our hypothesis is that we can solve the Tower of Hanoi game not through description of
rules of the games, but through observing the movement of the hand and objects. We conduct
research experiments to validate this hypothesis.The participants were given two successive
tasks : to solve the three-disk Tower of Hanoi task, then to solve this problem with four
disks. Through these research experiments, we have obtained the sequential data concerning
about the solution of Tower of Hanoi. And then, we have showed how the Recurrent Neural
Network(RNN) model can be used to solve the problem of TOH.

The RNN model has recently demonstrated state-of-the-art performance in operations
in various domains such as text ( Sutskever et al. [133]), motion capture data ( Sutskever
et al. [132]), and music. ( Eck and Schmidhuber [42]). RNN can generate a series of outputs
given a series of inputs at the same time, as used for time series forecasts such as stock prices.
Therefore, when a continuous state value is presented, a continuous output value can be
obtained. Also, successive input values are entered, but all outputs can be ignored and only
the last output value can be taken. For example, as we saw in Chapter 6, the output does not
change when an instructional or interactive gesture is presented as an input. This is because,
despite the process of reasoning, it may not be a state change that has a decisive effect on the
next action.

As mentioned earlier, the RNN model has a problem that it will never find the shortest
path unless most of the data suggests the shortest path to problem solving. Therefore, we
propose a new sequence training method that combines the Recurrent Neural Network and
the Reinforcement Learning (RL) method to find this minimal movement.

In RL model, we evaluate the generated moves by comparing these with the target state.
This is accomplished by reward mechanism where the favorable moves obtain the higher
rewards and the unnecessary moves or repeated moves doesn’t gain the higher rewards. To
realize the reinforcement learning Q-learning method is used in this chapter.
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Fig. 7.1 Tower of Hanoi puzzle (initial state)

7.2 Background and Related Work

7.2.1 Tower of Hanoi

The french mathematician Edouard Lucas introduced the Tower of Hanoi (TOH) puzzle in
1883 ( Chan [24]). Figure 7.1 shows a standard example of TOH. There are three pegs, A, B,
and C. There are three disks (D1,D2,D3) on peg A. The largest disk is at the bottom of peg A
and the smallest at the top. The purpose of TOH is to move the entire stack of disks from the
initial source peg A to a destination peg C. But there are two constraints: One disk at a time
should be moved and a large disk cannot be placed on top of a smaller one.

7.2.2 Recurrent Neural Network

As in previous section of Tower of Hanoi, we know that the problem solving of Tower of
Hanoi is considered as a sequential process. In this work, we have used a simple recurrent
neural network (RNN) which is based on Elman network ( [43]). This network is made up of
3 layers : x= (x1, ...,xT ) a input sequence , output vector sequence denoted as y= (y1, ...,yT ),
and h = (h1, ...,hT ) is the hidden vector sequence.(See Figure 7.2)

ht = f (xtU +ht−1W ) (7.1)

yt = g(htV ) (7.2)
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Fig. 7.2 Simple Recurrent Neural Network Architecture

where the U is the weight at the input neuron, W is the weight matrix at the recur-
rent neuron, f (z) = 1

1+exp−z is sigmoid activation function and g(zm) =
expZm

∑k expzk is softmax
function.

This model generates one output. The output vector yt is fed back to the model as a new
input. The probability given by the network to the input sequence x is

Pr(x) =
T

∏
t=1

Pr(xt+1|yt) (7.3)

and the sequence loss L(x) used to train the network is the negative logarithm of Pr(x):

L(x) =
T

∑
t=1

logPr(xt+1|yt) (7.4)

7.2.3 Reinforcement Learning

An environment takes the agent’s current state st at time t and action at as input, and
returns the agent’s reward r(st ,at) and next state st+1(See Figure 7.3). The agent’s goal is to
maximize the expected cumulative reward over a sequence of action.

An agent interacts with an environment. Given the state(st) of the environment at time
t, the agent takes an action at according to its policy π(at |st) and receives a reward r(st ,at)

(Figure 7.3). The objective of Tower of Hanoi is to find the solution in a way that is the
shortest possible movement. To do this, we take actions that maximize the future discounted

96



7.2 Background and Related Work

Fig. 7.3 Model of Reinforcement Learning

rewards. We can calculate the future rewards Rt = ∑
T
t ′=t γ t ′−trt ′ , where γ is a discount factor

for future rewards. In this article, the way of optimal solution is taken by the maximum
action-value function:

Qt+1(st ,at) = Qt(st ,at)+

α

(
rt+1 + γ max

a
Qt(st+1,a)−Qt(st ,at)

) (7.5)

7.2.4 Tower of hanoi and Reinforcement Learning

Figure 7.4 shows the state transition graph for the Tower of Hanoi puzzle. This shows the
state transition as the disk moves according to the rules of the puzzle. We know that the
minimum number of moves required to solve the Tower of Hanoi puzzle is 2N−1, where N
is the number of disks. Therefore, 4 disks can be solved with 7 moves. Therefore, the shortest
path of the 4 Disk Hanoi Tower Puzzle follows the path of the following state transition
graph : (0000)→(0001)→(0021)→ (0022)→(0122)→(0120)→(0110)→(0111)→(2111)
→(2112)→(2102)→(2100)→(2200)→(2201)→(2221)→(2222).

Before explaining our learning model, let us see how to use reinforcement learning to
solve the Hanoi Tower problem. First of all, we create the reward matrix R. The compensation
matrix of the Hanoi Tower for four disks is represented by the following matrix 7.6. The
columns of the matrix represent states and the rows represent actions. Compensation for
movement from the state of (0,0,1,2) to the state (0,0,2,2) is indicated by zero. The transition
from the state of (0,0,1,2) to the state (0,1,0,0) violates the rule and is referred to as −∞. And
when moving to the target state (2,2,2,2), the compensation is set to 100.
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Fig. 7.4 The state-transition diagram corresponding to the 4-disk structure

R =

(0000) (0001) (0002) . . . (2220) (2221) (2222)



(0000) -∞ -∞ -∞ . . . -∞ -∞ -∞
(0001) -∞ -∞ 0 . . . -∞ -∞ -∞
(0002) -∞ 0 -∞ . . . -∞ -∞ -∞

...
...

...
... . . . ...

...
...

(0222) -∞ -∞ -∞ . . . -∞ -∞ 100
(1000) 0 -∞ -∞ . . . -∞ -∞ -∞
(1222) -∞ -∞ -∞ . . . -∞ -∞ 100

...
...

...
... . . . ...

...
...

(2222) -∞ -∞ -∞ . . . -∞ -∞ -∞

(7.6)

The Q value is then initially set to zero and assigned a value for possible movement
in each state. As in Equation 7.5, we maximize the values to find the optimal solution.
Figure 7.5 shows the result of simulation with discount factor (gamma) 0.9 and learning
factor(alpha) 0.001, 0.01, and 0.1, respectively. An interesting feature of learning is that in
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all cases learning is slow initially, and at some point learning reaches the ’inflection point’
and then converges to the optimal number of movements at an accelerated rate.

7.3 Model

RNN models can be optimized to predict observations and immediate rewards. On the
other hand, RL models can be trained to maximize long-term re wards. We can calculate
the probabilities distribution of the observation over all possible actions. These calculated
probabilities are helpful for determining the next action. Let us take an example. We can
have two possible next actions {G1,G3} at time 0 (See Figure 7.7) according to the rules of
TOH (Table 7.1 ).

Table 7.1 Rewards and possible actions at time 0.

G1 G2 G3 G4 G5 G6
1 0 1 0 0 0

The table 7.2 shows the number of probabilistic cases of possible choices given the input
at the initial time t = 0. The two tables 7.1 and 7.2 show that the next action we choose is G3
(From Peg A to Peg C).

Table 7.2 Probabilities and possible actions at time 0.

G1 G2 G3 G4 G5 G6
0.35 0.003 0.60 0.00 0.001 0.001

In the previous section, we found answers to four disks with reinforcement learning
theory. In the previous compensation matrix, we set an infinite value when the rule was
violated and set a value of 0 when the rule was not violated. If we moved some disks, we
didn’t break the rules. But consider the case where the shift is the number of cases where
the optimal value is not found. Table 7.3 shows how one participant solves the Tower of
Hanoi with four discs. If you look at the sixth and seventh lines, you can see that this
participant moves the same disc twice in succession. This does not violate the rules, but it is
not the optimal solution. So in this case we set negative compensation -1. With this adjusted
compensation matrix, we built a new model that combines the calculated probabilities with
the adjusted compensation relationship to find the optimal solution. Initially, set the Q matrix
value to 0 and update the Q value while performing RNN. Compare the probability value
and the Q value of the RNN for the following possible behaviors to ensure that you select the
most optimal value.
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Fig. 7.5 Four disks Hanoi Tower Solution with Reinforcement Learning
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Fig. 7.6 Solving of Tower of Hanoi puzzle with RL and RNN: xt is the observation, ht is the
hidden state for RNN, yt is the predicted observation for time t +1, R(s,a)t is the predicted
reward

7.4 Experiments

7.4.1 Coding

We encoded participant’s actions from the sequences of observations. If we move a disk
from peg A to peg B, we then encoded as G1. We can encode all possible actions in the same
way (See Figure 7.7). For example, Figure 7.8 illustrates an example of sequence of solution.
From initial state(G0), we moved a disk from peg A to peg B(G1) and then moved another
disk from peg A to peg C(G2). Next, we decided to take the disk from peg B and put it on
another disk in peg C(G2). In this case, we encode this sequence as {GO,G1,G3,G2}

7.4.2 Experiment: Tower of Hanoi

We recruited 14 participants (Average age 41, Standard Deviation=8.51). The blind group
consisted of 6 women and 1 man (Average age 39, Standard Deviation=6.65). The sighted
group consisted of 6 women and 1 man (Average age 43, Standard Deviation=10.30). Sitting
down at the table, the participants were then given four disks of the Tower of Hanoi that
they had to solve. The instructions were given to the participants. The participants were
requested to solve the four disks TOH as we collected their gesture. Through these research
experiments, we have obtained the sequential data concerning about the solution of Tower of
Hanoi. Table 7.4 shows results of Tower of Hanoi for all participants.

More specifically, the sighted participants made use of their deictic gesture which is
used as grounding for a mapping between the object imagined and action. The deictic
gesture forces them to remember what they have done in previous attempt. The result
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Fig. 7.7 Coding for all possible actions

Fig. 7.8 Clockwise from top left: Initial state(G0), move a disk from peg A to peg B(G1),
move a disk from peg A to peg C(G3) and move a disk from peg B to peg C (G2). We encode
the sequence of these movements :{GO,G1,G3,G2}
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Table 7.3 Solution acquired by a participant

Number States Rewards
Peg A Peg B Peg C

1 d1/d2/d3/d4 0
2 d2/d3/d4 d1 1
3 d3/d4 d2 d1 1
4 d3/d4 d1/d2 1
5 d4 d1/d2 d3 1
6 d4 d2 d1/d3 1
7 d1/d4 d2 d3 -1
8 d1/d4 d2/d3 1
9 d4 d1/d2/d3 1

10 d4 d1/d2/d3 1
11 d1 d4 d2/d3 1
12 d1 d2/d4 d3 1
13 d1/d2/d4 d3 1
14 d3 d1/d2/d4 1
15 d3 d2/d4 d1 1
16 d2/d3 d4 d1 1
17 d1/d2/d3 d4 1
18 d1/d2/d3 d4 10
19 d2/d3 d1/d4 10
20 d3 d2 d1/d4 10
21 d3 d1/d2 d4 10
22 d1/d2 d3/d4 15
23 d1 d2 d3/d4 15
24 d1 d2/d3/d4 18
25 d1/d2/d3/d4 20

shows that the number of deictic gesutres for this group is correlated with the total duration
[r = .44, p < 0.019]. Meanwhile, the blind people build their mental representation with their
hands trough touch. For the blind participants, the gestures added action information to their
mental representation of the tasks by touching the disk or rotating it. the number of gesture
for the blind people is correlated with the total duration. [r = .496, p < 0.0072]

7.4.3 Experiment: RNN+RL model

Our hypothesis is to solve the Tower of Hanoi puzzle through observing the movement
of the hand and objects. To do this, we conducted experiment by training our combined
model(RNN+RL) on the sequential data obtained in previous experiments on TOH solution.
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Table 7.4 Results of Tower of Hanoi for 15 participants

Participant Number
of moves

Participant Number
of moves

1 15 9 44
2 25 10 35
3 21 11 23
4 48 12 38
5 23 13 15
6 24 14 34
7 32 15 26
8 30

First of all, we evaluate and compare the performance of RNN modle on this sequential data.
And then the combined model (RNN+RL) is carried out.

The weights of all networks are initialized to random values uniformly distributed in the
interval from [−1/

√
n,1/
√

n],where n is the number of incoming connections. To train our
model we minimize the loss function for our training data.

RNN model

Codings based on the acquired data are listed in Appendix B.1 Tower of Hanoi Resolution
Dataset for Recurrent Neural Network. Based on these data, the results of simulating the
RNN model are shown in the table 7.5. In state (0000) there is a 59% chance of choosing
G1 and a 36% chance of choosing G3. The RNN model makes the choice with the highest
probability of a possible choice. In this way, the most optimal solution chosen by our model
proceeds to the selection indicated in red in the table, and the result of the state transition is
as follows. (0000), (0001), (0021), (0022), (0122), (0121), (0120), (0110), (0111), (2111),
(2112), (2102), (2101) , (2121), (2120), (2121), (2101), (2100), (2201), (2201), (2221),
(2222)

Comparing this result with the minimum paths of participants in 7.4, the total number of
disk movements is 21. It is more than the minimum path 15 of participants 1 and 13, but it
is the third fastest path (See Figure 7.9). To find the minimum path 15 in the RNN model,
more data is needed. In particular, it is possible to have a lot of data about the minimum path.
Then, we applied the RNN-RL model to find the minimum path without additional training
data.
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Table 7.5 State Transition and Probabilistic Selection of RNN Models

State G3 G1 G2 G4 G6 G5 Choice
(0000) 0.364 0.591 0.002 0.0 0.002 0.0 G1
(0001) 0.946 0.009 0.001 0.002 0.003 0.0 G3
(0021) 0.0 0.003 0.493 0.01 0.397 0.008 G2
(0022) 0.008 0.902 0.014 0.0 0.0 0.001 G1
(0122) 0.0 0.002 0.009 0.619 0.299 0.0 G4
(0121) 0.031 0.0 0.001 0.011 0.096 0.824 G5
(0120) 0.005 0.0 0.065 0.874 0.0 0.013 G4
(0110) 0.057 0.894 0.001 0.0 0.004 0.015 G1
(0111) 0.97 0.0 0.0 0.003 0.002 0.002 G3
(2111) 0.0 0.001 0.95 0.016 0.001 0.004 G2
(2112) 0.004 0.002 0.001 , 0.001 0.009 0.938 G5
(2102) 0.001 0.0 0.002 0.947 0.019 0.0 G4
(2101) 0.892 0.001 0.0 0.0 0.003 0.055 G3
(2121) 0.0 0.004 0.003 0.003 0.021 0.905 G5
(2120) 0.025 0.861 0.048 0.004 0.0 0.0 G1
(2121) 0.02 0.0 0.0 0.039 0.892 0.004 G6
(2101) 0.027 0.0 0.02 0.044 0.01 0.765 G5
(2100) 0.001 0.058 0.89 0.001 0.0 0.0 G2
(2201) 0.018 0.802 0.0 0.0 0.06 0.0 G1
(2201) 0.748 0.001 0.0 0.019 0.001 0.0 G3
(2221) 0.0 0.001 0.97 0.019 0.001 0.0 G2

7.4.4 Results

After training for the model RNN, we obtained the following shortest path : G1,G3,G2,G1,G4,G5,G4,
G1,G3,G2,G5,G4,G3,G5,G1,G6,G5,G2,G1,G3,G2(21 movements). The training error is
shown in figure 7.10.

Compared to the experimental results in table 7.4, this RNN model shows good perfor-
mance improvement. Nevertheless, this result is not the fastest solution. According to the
table 7.4, the first participant and the thirteenth participant find the fastest solution. On the
other hand, from figure 7.11, we can see that this combined model(RNN+RL) improves the
performance compared with RNN model.

7.5 Conclusions

As participants have a difficulty triggering simulations with visual object, deictic gesture for
the sighted participants plays a central role in generating visual inferences. Meanwhile, the
blind participants have a difficulty solving TOH because of the lack of tactile object. The
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Fig. 7.9 Comparing Results with Participants and the RNN Model
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Fig. 7.11 Cumulative reward graph for RNN+RL model

interaction gestures for these participants play an important role in building their mental
representation.

Base on this experiment, we conducted an experiment (Tower of Hanoi task) in order to
test the effects of gesture. In this work, we propose a new approach that combines recurrent
neural network and reinforcement learning to solve the TOH task through observing the
movement of the hand and objects. Our RNN+RL model finds the optimal solution for TOH.
However, although our sequential data comprises the movement action on disk, this was
not enough to describe the reasoning process for deictic gestures and interaction gestures,
including touching the disk and rotating it. Later, we will implement more sophisticated
modeling to understand the TOH problem solving reasoning processes.

107





Chapter 8

Using Convolutional Neural Networks
and Recurrent Neural Network for
Human Gesture Recognition and
Problem Solving

Problem solving, such as Tower of Hanoi, is a mental process that involves identifying
problems, developing strategies and organizing knowledge. We have acquired a series of
data from participants solving the Tower of Hanoi problem to understand human behavior
and cognitive reasoning in the problem-solving process. These data have a lot of semantic
information, including the objects around participants, actions and interactions with ob-
jects.Therefore, given a series of data that are all labeled with a multiple categories, we
have predicted these categories for a novel set of test data with the help of convolutional
neural networks (CNNs). In addition to category inference, we use the Long Short-Term
Memory(LSTM) model to do behavioral reasoning from sequential data. Papers submitted
related to this chapter is :

1. Sanghun, B. and Charles, T. Using Convolutional Neural Networks and Recurrent
Neural Networks for Humain Gesture Recognition and Problem Solving, 2018. Com-
putational Intelligence, IJCCI 2018, Revised Selected papers

8.1 Introduction

The theory of embodied cognition ( Varela et al. [139], Barsalou [11]) suggests that our
body influences our thinking. Embodied cognition approaches made contributions to our
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understanding of the nature of gestures and how they influence learning. Frequently in
the literature on embodied cognition ( Nathan [97]), gestures are used as grounding for a
mapping between thinking and real objects in the world, in order for the easy catching of
meanings.

Classical puzzle-like problem, such as Tower of Hanoi puzzle and missionaries-cannibals
have received a lot of attentions because they do not involve domain-specific knowledge
and can, therefore, be used to investigate basic cognitive mechanisms such as search and
decision-making mechanisms ( RICHARD et al. [122]). To analyze the effect of gestures on
problem solving cognitive processes (learning, memorizing, planning, and decision-making),
we recruited participants who were asked to solve the puzzle of Tower of Hanoi (TOH).

Our hypothesis is that we can model the solving processes of the Tower of Hanoi, not
simply through the description of the disks’ moves according to the rules, but through
observing the movements of the solver’s hand with or without the disks. In order to test this
hypothesis, we carried out an experiment for which participants were given two successive
tasks: to solve the three-disk Tower of Hanoi task, then to solve this problem with four disks.

We investigated how gestures ground the meaning of abstract representations used in
this experiment. The gestures added action information to their mental representation. The
deictic gesture used in this experiment forces the participants to remember what they have
done in previous attempt. The purpose of our research through this experiment is to infer the
problem solving or the rules of game through modeling of human behavior. We collected all
of the sequential gestures data that bring reaching the goal. These data were used to model
and simulate how to solve the problem of TOH with Convolutional Neural Networks and
Long Short-Term Memory (LSTM).

Recently, Deep CNNs ( LeCun et al. [79], Szegedy et al. [135]) have been very successful
on single-label object classification, i.e., ImageNet Large Scale Visual Recognition Challenge
( Szegedy et al. [135], Russakovsky et al. [126]). These algorithms have been very successful
for a variety of tasks including image classification ( Krizhevsky et al. [73], Oquab et al.
[103], Sharif Razavian et al. [129]), object detection ( Girshick et al. [47], Sermanet et al.
[128]), and others ( Cho et al. [26]). In this paper, we pay our attention to the multi-label
image classification to understand the Tower of Hanoi solution. The objects around us,
surrounding scenes, actions, and interactions with objects all contain semantic information
as like our everyday life. The images obtained from real world have many and complex
categories. Likewise, our collected sequential images also contain various semantic informa-
tion: The objects around participant, theirs actions, and interactions with objects. Therefore,
the task with multi-label image classification helps to understand more complex semantic
information.
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State-of-the-art have recently demonstrated performance’ LSTM models across a variety
of tasks in domains such as text ( Sutskever et al. [133]), motion capture data ( Sutskever
et al. [132]), and music ( Eck and Schmidhuber [42]). In particular, LSTM can be trained for
sequence activation while processing real data sequences. Therefore, we modeled the Tower
of Hanoi solving processes with the help of LSTM method.

8.2 Background and Related Work

8.2.1 Tower of Hanoi

The french mathematician Edouard Lucas introduced the Tower of Hanoi (TOH) puzzle in
1883 ( Chan [24]). Figure 8.1 shows a standard example of TOH. There are three pegs, A, B,
and C. There are four disks (d1,d2,d3,d4) on peg A. The largest disk is at the bottom of peg A
and the smallest at the top. The goal of TOH is to move the whole stack of disks from the
initial source peg A to a destination peg C. There are three rules as constraints: One disk at
a time should be moved, in a location, the smallest disk is the one to take and a large disk
cannot be placed on top of a smaller one. The minimum number of moves needed to solve
TOH with n disks is denoted by 2n−1.

8.2.2 Recurrent Neural Network

In our previous work ( Bang and Tijus [5]), we used a simple Recurrent Neural Network
which is based on Elman network ( Elman [43]). As is well known, the simplest RNN
model has a vanishing gradient problem. That’s why, we implemented the gated activation
functions, such as the long short-term Memory(LSTM) ( Hochreiter and Schmidhuber [60])
to overcome the limitations of our model. Because the TOH solving process is a sequential
process. In this work, we have used a LSTM-RNN network which computes a mapping from
an x = (x1, ...,xT ) a input sequence to an output vector sequence denoted as y = (y1, ...,yT )

by calculating the network unit activation using the following equations :

it = δ (Wixxt +Uiht−1 +bi) (8.1)

ft = δ (Wf xxt +U f ht−1 +b f ) (8.2)

ot = δ (Wf xxt +U f ht−1 +bo) (8.3)

ct = ft ◦ ct−1 + itγ(Wcxxt +Ucht−1 +bc) (8.4)

ht = ot ◦δ (ct) (8.5)
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Fig. 8.1 Four disks in Tower of Hanoi puzzle
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where W and U terms denote weight matrices, the b terms denote bias vectors(ex: bi is
the input gate bias vector), σ and γ denote activation functions, xt is input vector, ft is forget
gate’s activation vector, it is input gate’s activation vector, ht is hidden state vecor, and ot

denotes output gate’s activation vector.

8.2.3 Convolutional Neural Networks

Convolutional neural networks(CNNs) are a type of artificial neural network designed to be
easy to apply to images. CNNs were first proposed in 1998 by Lecun et al ( LeCun et al. [79])
and consists of a convolution layer and a pooling layer, unlike the structure used in general
multilayer perceptron (See Figure 8.2). Convolutional Neural Networks are a very famous
neural network model used of image classification. In particular, We were interested in work
of Gong et. al ( Gong et al. [51]) on the recent multi-label deep convolutional ranking net.
Because we should take into account various situations and behaviors in the problem solving
process.

Fig. 8.2 The Deep Convolutional Neural Network for multi-label classification

8.2.4 Reinforcement Learning

An environment takes the agent’s current state st at time t and action at as input, and returns
the agent’s reward r(st ,at) and next state st+1(See Figure 3). The agent’s goal is to maximize
the expected cumulative reward over a sequence of action.

An agent interacts with an environment. Given the state(st) of the environment at time
t, the agent takes an action at according to its policy π(at |st) and receives a reward r(st ,at)

(See Figure 8.3). The objective of Tower of Hanoi is to find the solution in a way that is the
shortest possible movement. To do this, we take actions that maximize the future discounted
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Fig. 8.3 Model(Reinforcement Learning) extracted from [5]

rewards. We can calculate the future rewards Rt = ∑
T
t ′=t γ t ′−trt ′ , where γ is a discount factor

for future rewards. In this article, the way of optimal solution is taken by the maximum
action-value function:

Q(st ,at) = Q(st ,at)+α

(
rt+1 + γ max

a
Q(st+1,a)−Q(st ,at)

)
(8.6)

where α ∈ [0,1) is the learning rate sequence, and γ is the discount factor.

8.3 Model

In this chapter, CNN and LSTM-RL methods are introduced. Our method is divided into
two parts. The first method consists of extracting the features and predicting the multi-
label by means of Convolutional Neural Networks method. The first model doesn’t just
mean classification. In the next chapter, it will be extended to a model for examining the
relationship between natural language processing and images. This will allow not only
to classify the elements in the photo, but also to be able to explain. The second method
combines Long Short-Term Memory Recurrent Neural Network and Reinforcement Learning
methods to obtain the shortest solution path.

8.3.1 CNN Multi-label categorization

The video data was converted into a series of images. In addition, for each image, a multi-
label classification was performed for all the information on the participant’s actions, hand
movements, holding the disk, and changing the location. Sample coding data for continuous
images are presented in Appendix B.3.1 Convolutional Neural Network. Let us take a more
specific example. If the participant’s image is given, as shown in Figure 8.5, the image is
labeled LD1, MD1, RD2, and TD1. LD1 means one disk is on the left and MD1 means the
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disk is in the middle. RD2 means two disks on the right. Finally, in the case of TD1, it means
to grab disk 1. If you describe multiple categories in this way, you can summarize them as
follows:

LD1-LD4(There are one to four disks on the left side), MD1-MD4(There are one to four
disks in the middle), RD1-RD4(There are one to four disks on the right), TD1-TD4(Take
disk 1, disk 2, disk 3, disc 4), PD1-PD4(Put disk 1, disk 2, disk 3, disk 4). The per-class
precision is shown in figure 8.4.
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Fig. 8.4 The per-class barplots of input images. A description of the multi-category is as
follows: LD1-LD4(There are one to four disks on the left side), MD1-MD4(There are one to
four disks in the middle), RD1-RD4(There are one to four disks on the right), TD1-TD4(Take
disk 1, disk 2, disk 3, disc 4), PD1-PD4(Put disk 1, disk 2, disk 3, disk 4).

Table 8.1 shows our proposed architecture. This model with 4 layers takes a input image
80 × 80 × 3 (3:color image,1:black & white image) and predicts a 20 dimensional tag vector.
And our CNN model has 869,748 trainable parameters.

8.3.2 Combined Recurrent Neural Network and Reinforcement Learn-
ing

In the previous model, if the learning was performed in a static environment given data, Re-
inforcement Learning proceeds with the agent taking some action for the given environment
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Fig. 8.5 Labelling for the required images: There is one disk on the left (LD1) and the middle
peg (MD1), and two disks on the right peg (RD2). The participant is holding d1 (TD1).

and getting some reward from it. At this time, the agent learns to maximize the reward. That
is, reinforcement learning is an algorithm that encompasses the process of collecting data in a
kind of dynamic environment. Based on the multi-label classification of CNN, we predicted
possible action between sequential images (See Figure 8.6).

After learning of the image through CNN is completed, we present the image with all
four disks on the right. The composite model of reinforcement learning and recurrent neural
networks presents probability values for possible next actions for the presented image. In
particular, LSTM was applied when using a recurrent neural network in this model. Table 8.2
shows the successive images and predictable probabilities for each classification. For the first
image, there is a 100 percent chance that there are four disks on the right, and a 45 percent
chance that the participant will grab disk 1. Likewise, there are subtle differences between
the 2nd and 5th images, but our model predicts the same result as the first image. Therefore,
our model gives the command to catch disk 1 as the predicted value for the next action. In the
seventh figure, the probability value of holding disk 1 decreases, and the probability value of
dropping disk 1 increases to 14 percent. We know intuitively that we’re putting down Disc 1
because we caught Disc 1 in the previous action. However, the probability value is low for
our model to make a definitive decision. After that, the probability of catching Disc 1 drops
to 17 %, and the probability of dropping Disc 1 increases to 27 %. At this time, our model
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Fig. 8.6 Solving of Tower of Hanoi puzzle with CNN and LSTM-RL: xt is the observation,
ht is the hidden state for LSTM, yt is the predicted observation for time t +1, R(s,a)t is the
predicted reward
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Table 8.1 The summary of Our Convolutional Neural Networks model

Layer (type) Output Shape Param
conv2d1(Conv2D) (None, 76, 76, 16) 1216
max pooling2d 1 (MaxPooling2) (None, 76, 76, 16) 0
dropout 1 (Dropout) (None, 76, 76, 16) 0
conv2d 2 (Conv2D) (None, 72, 72, 32) 12832
max pooling2d 2 (MaxPooling2) (None, 36, 36, 32) 0
dropout 2 (Dropout) (None, 36, 36, 32) 0
conv2d 3 (Conv2D) (None, 32, 32, 64) 51264
max pooling2d 3 (MaxPooling2) (None, 16, 16, 64) 0
dropout 3 (Dropout) (None, 16, 16, 64) 0
conv2d 4 (Conv2D) (None, 12, 12, 128) 204928
max pooling2d 4 (MaxPooling2) (None, 6, 6, 128) 0
dropout 4 (Dropout) (None, 6, 6, 128) 0
flatten 1 (Flatten) (None, 4608) 0
dense 1 (Dense) (None, 128) 589952
dropout 5 (Dropout) (None, 128) 0
dense 2 (Dense) (None, 64) 8256
dropout 6 (Dropout) (None, 64) 0
dense 3 (Dense) (None, 20) 1300
Total params: 869,748
Trainable params: 869,748
Non-trainable params: 0

chooses to put down the disk out of two actions (hold the disk and put it down). This will
match G4. As show in fig 8.7 , it means "move a disk from right peg to the middle peg".

After predicting actions from sequential images, LSTM models can be optimized to
predict observations. In this way, the next action is predicted, and when the next image
is presented, it is predicted again by the trained first model CNN, and the next action is
decided. On the other hand, RL models can be trained to maximize long-term rewards. We
can calculate the probabilities distribution of the observation over all possible actions. These
calculated probabilities are helpful for determining the next action. As shown in the figure
8.7, we can have two possible next actions {G1,G3} at time 0 according to the rules of TOH
(See Table 8.3 ).

Table 8.4 is achieved by looping an output of the network at time 0 with the input of the
network. Therefore, base on the table 8.3 and table 8.4, we choose the next action G3 ( From
Peg A to Peg C).
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Table 8.2 Sequential images and probabilities

Sequential image Multi-label and probability Predictive
Action

[’RD4’, ’TD1’, ’TD2’, ’TD3’, ’PD1’, ’PD2’, ’MD1’, ’LD1’] TD1
[’1.00’, ’0.45’, ’0.01’, ’0.00’, ’0.00’, ’0.00’, ’0.00’, ‘0.00’]

[’RD4’, ’TD1’, ’TD2’, ’TD3’, ’PD1’, ’PD2’, ’MD1’, ’LD1’] TD1
[’1.00’, ’0.45’, ’0.01’, ’0.00’, ’0.00’, ’0.00’, ’0.00’, ’0.00’]

[’RD4’, ’TD1’, ’TD2’, ’TD3’, ’PD1’, ’PD2’, ’MD1’, ’LD1’] TD1
[’1.00’, ’0.44’, ’0.01’, ’0.00’, ’0.00’, ’0.00’, ’0.00’, ’0.00’]

[’RD4’, ’TD1’, ’TD2’, ’TD3’, ’PD1’, ’PD2’, ’MD1’, ’LD1’] TD1
[’1.00’, ’0.44’, ’0.01’, ’0.00’, ’0.00’, ’0.00’, ’0.00’, ’0.00’]

[’RD4’, ’TD1’, ’TD2’, ’TD3’, ’PD1’, ’PD2’, ’MD1’, ’LD1’] TD1
[’1.00’, ’0.44’, ’0.01’, ’0.00’, ’0.00’, ’0.00’, ’0.00’, ’0.00’]

[’RD3’, ’TD1’, ’PD1’, ’TD2’, ’LD1’, ’MD1’, ’PD2’, ’TD3’] TD1
[’0.98’, ’0.26’, ’0.14’, ’0.11’, ’0.04’, ’0.04’, ’0.01’, ’0.01’]

[’RD3’, ’MD1’, ’PD1’, ’TD1’, ’TD2’, ’PD2’, ’TD3’, ’TD4’] PD1
[’0.99’, ’0.92’, ’0.27’, ’0.17’, ’0.15’, ’0.02’, ’0.01’, ’0.01’] G4
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Fig. 8.7 Coding - Move a disk from the left peg to the middle peg (G1). Move a disk from
the middle peg to the right peg (G2). Move a disk from the left peg to the right peg (G3).
Move a disk from the right peg to the middle peg (G4). Move a disk from the middle peg to
the left peg (G5). Move a disk from the right peg to the left peg (G6) extracted from [5]

Table 8.3 Rewards and possible actions at time 0 extracted from ( [5]).

G1 G2 G3 G4 G5 G6
1 0 1 0 0 0

Furthermore, table 8.5 is a result acquired by a participant. This participant moved the
same disk in a row (Between 6th and 7th line). In this case, the agent receives a negative
rewards (-1) because this is not the optimal solution. Thus, in order to find the optimal
solution, we modify selection algorithm by combining the calculated probabilities and
rewards for possible action.

Based on the possible actions, we can predict possible action G3 in table 8.7. But in order
to maximize its cumulative reward (See table 8.6), our LSTM+RL model takes an action G2
instead of G3.
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Table 8.4 Probabilities and possible actions at time 0 extracted from ( [5]).

G1 G2 G3 G4 G5 G6
0.35 0.003 0.60 0.00 0.001 0.001

8.4 Experiments

8.4.1 Experiment: Multi-label categorization

The classifier was optimized by splitting 1186 original images into 9% training images (1067
images) and 10% validation images(119 images). We then tested the accuracy of the model
with 300 test data.

As shown in previous section, We have acquired a series of data from participants solving
the Tower of Hanoi problem. These data contain semantic information, including actions and
interactions with objects. In this experiment, given a series of data that are all labeled with a
multiple categories, we have predicted these categories for a novel set of test data. For the
evaluation metrics, precision/recall/F1 score have been used to evaluate the performance of a
classification problems.
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Fig. 8.8 The predicted result based on Convolution Neural Network( Participant1)

For precision/recall/F1 score, if the estimated label confidence for a label is greater than
0.5, the label is expected to be positive. However, for the estimated label confidence for the
labels (TD1-4 and PD1-4), only positive label were assigned to the variable with the highest
estimated label confidence of the eight labels. As Based on the trained CNN model, we
predicted the multi-label categorization for the test image. Figure 8.11 shows an example of
the testing result.

According to the table 8.8, the resulting F1 values for status labels(LD1-4,MD1-4,RD1-4)
, which represented the model accuracy for multi-label prediction of CNN model, were
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Table 8.5 Solution acquired by a participant extracted from [5].

States Rewards
Peg A Peg B Peg C

d1/d2/d3/d4 0
d2/d3/d4 d1 1

d3/d4 d2 d1 1
d3/d4 d1/d2 1

d4 d1/d2 d3 1
d4 d2 d1/d3 1

d1/d4 d2 d3 -1
d1/d4 d2/d3 1

d4 d1/d2/d3 1
d4 d1/d2/d3 1

d1 d4 d2/d3 1
d1 d2/d4 d3 1

d1/d2/d4 d3 1
d3 d1/d2/d4 1
d3 d2/d4 d1 1

d2/d3 d4 d1 1
d1/d2/d3 d4 1
d1/d2/d3 d4 10

d2/d3 d1/d4 10
d3 d2 d1/d4 10
d3 d1/d2 d4 10

d1/d2 d3/d4 15
d1 d2 d3/d4 15
d1 d2/d3/d4 18

d1/d2/d3/d4 20
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Fig. 8.9 The predicted result based on Convolution Neural Network(Participant2)
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Table 8.6 Negative Reward and possible action extracted from [5].

G1 G2 G3 G4 G5 G6
-1 1 -1 0 0 0

Table 8.7 Probabilities and possible actions extracted from [5].

G1 G2 G3 G4 G5 G6
0.0002 0.001 0.83 0.13 0.0004 0.002
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Fig. 8.10 The predicted result based on Convolution Neural Network(Participant6)
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Fig. 8.11 The predicted result based on Convolution Neural Network(Participant2-seconde
image)

high(>0.90) with the exception of LD3,LD4, and RD1 (0.8570,0.4979, and 0.8650, re-
spectively). For the action’s labels(TD1-4,PD1-4), a low degree of F1 value was found for
TD4,PD3, and PD4 (0.4936, 0.4958, and 0.4979, respectively). We present visualizations of
the learning curves (See Figures 8.13 and 8.14). Overfitting occurred in the early 10 to 50
iterations. After 50 iterations, accuracy increasing with the number of iterations and training
accuracy above the validation accuracy.
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Fig. 8.12 Accuracy comparison for a convolutional neural network (CNN) with layers and
epochs. The image on the left are 2 convolutional layers with 200 epochs. The middle is 3
convolutional layers with 200 epochs. The last image on the right is 4 convolutional layers
with 200 epochs.

8.4.2 Experiment: LSTM+RL

The output vector obtained from CNNs contains semantic information. We feed this output
vector into the RNN as an initial state for label prediction. And then, our model predict a
possible action between sequential action. To do this, we conducted experiment by training
our combined model(LSTM+RL) on the sequential data obtained in previous experiments on
TOH solution. First of all, we evaluate and compare the performance of LSTM model on this
sequential data. And then the combined model (LSTM+RL) is carried out.
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Table 8.8 Results on performance metrics for all labels.

Label Precision Recall F1
One disk on the left(LD1) 0.9389 0.9435 0.9406
Two disks on the left(LD2) 0.9610 0.9716 0.9662
Three disks on the left(LD3) 0.8912 0.8289 0.8570
Four disks on the left(LD4) 0.4958 0.5000 0.4979
One disk in the center(MD1) 0.9242 0.9225 0.9233
Two disks in the center(MD2) 0.9588 0.9706 0.9645
Three disks in the center(MD3) 1.0000 1.0000 1.0000
Four disks in the center(MD4) 1.0000 1.0000 1.0000
One disk on the right(RD1) 0.8684 0.8618 0.8650
Two disks on the right(RD2) 0.9552 0.9490 0.9520
Three disks on the right(RD3) 0.9333 0.9906 0.9595
Four disks on the right(RD4) 0.9955 0.9444 0.9683
Take d1(TD1) 0.5457 0.5535 0.5495
Take d2(TD2) 0.5276 0.5454 0.5364
Take d3(TD3) 0.5580 0.7201 0.5825
Take d4(TD4) 0.4874 0.5000 0.4936
Put d1(PD1) 0.5753 0.6312 0.5877
Put d2(PD2) 0.4906 0.5127 0.5014
Put d3(PD3) 0.4916 0.5000 0.4958
Put d4(PD4) 0.4958 0.5000 0.4979

The weights of all networks are initialized to random values uniformly distributed in the
interval from [−1/

√
n,1/
√

n],where n is the number of incoming connections. To train our
model we minimize the loss function for our training data.

To train the combined model we first initialized all of the LSTM’s parameters with the
uniform distribution between -0.1 and 0.1. We used stochastic gradient descent, with a fixed
learning rate of .5. After 5 epochs, if loss increased in every epoch, we adjusted the learning
rate. This LSTM model made predictions representing probabilities of the next action. To
train the Q-function we initialized all Q-values of all state-action pairs to zero and initialized
the states with their given rewards. Based on all possible actions obtained by LSTM, we
measured a reward value for each possible action. If an action has the highest probability and
reward, we can choose this as next sequential action. Otherwise we search another possible
action with the highest reward value as next sequential action. Then, we updated the Q-value
according to the equation (8.6) and repeated the process until a terminal state was reached.
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Fig. 8.13 Accuracy comparison for a convolutional neural network (CNN) with layers and
epochs. The image on the left are 2 convolutional layers with 200 epochs. The middle is 3
convolutional layers with 200 epochs. The last image on the right is 4 convolutional layers
with 200 epochs.

8.4.3 Results

Similar to the results in Chapter 7, the results of the simulation were the same. After training
for the model RNN, we obtained the following shortest path : G1,G3,G2,G1,G4,G5,G4,
G1,G3,G2,G5,G4,G3,G5,G1,G6,G5,G2,G1,G3,G2(21 movements). The training error is
shown in figure 8.15.

Compared to the experimental results in table 7.4, this RNN model shows good perfor-
mance improvement. Nevertheless, this result is not the fastest solution. According to the
table 7.4, the first participant and the thirteenth participant find the fastest solution. On the
other hand, from figure 8.16, we can see that this combined model(LSTM+RL) improves the
performance compared with LSTM model.

8.5 Conclusions

The images obtained from real world have many and complex categories. The objects
around us, surrounding scenes, actions, and interactions with objects all contain semantic
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Fig. 8.14 Loss comparison for a convolutional neural network (CNN) with layers and epochs.
The image on the left is 2 convolutional layers with 200 epochs. The middle image is 3
convolutional layers with 200 epochs. The last image on the right is 4 convolutional layers
with 200 epochs.
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Fig. 8.15 LSTM train error at each epoch

information. In this paper, we focused on the semantic information we encountered in
the problem-solving process. We firstly explored multi-label image classification in order
to analyze these semantic information. In addition, we proposed a convolutional neural
network(CNN) and LSTM-RL based method that is capable of efficiently extracting features
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Fig. 8.16 Cumulative reward graph for LSTM+RL model

and finding solution of Tower of Hanoi.The proposed model has achieved the state-of-art
performance. It can be seen that our proposed model can be a good choice to find a solution
of Tower of Hanoi.

Further, there are two things that need to be studied in depth. First of all, as participants
have a difficulty triggering simulations with visual object, deictic gesture for the sighted
participants plays a central role in generating visual inferences. Meanwhile, the blind
participants have a difficulty solving TOH because of the lack of tactile object. The interaction
gestures for these participants play an important role in building their mental representation.
Based on these observations, what we are wondering is how artificial intelligence constructs
mental expressions like human beings and how to understand the meaning of such hand
motions. The second thing to study is extremely simple. In the end, in order to find the
solution of problem as like human beings, we must understand the rule of game accurately
by understanding natural language. One disk at a time should be moved, in a location, a
large disk cannot be placed on top of a smaller one. When someone plays the game directly
by explaining the rules of the game as above, we can understand the rule of game while
mapping languages and images. Likewise, we will do research to understand game rules
through natural language processing and image analysis.
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Chapter 9

Understanding Natural Language with
Convolutional Neural Networks for
Problem solving

9.1 Introduction

When we have conversations with children of the age of 2 or so, we can see that they try
to communicate with only two or three words without considering the existing grammar
framework. Children recognize objects through sensory movements and try to communicate
based on them. It doesn’t matter any language and no grammatical disruption matters. Think
about it, We can see them playing with multinational kids in Crash too. Children can fully
communicate with each other even though they are not yet proficient in French. It can be seen
that the reason is related to dialogue based on actions and emotions, in other words, based
on sensory movements. Early childhood children directly connect verbal forms to concepts
and categories that have already been established in the process of non-verbal cognitive
development.

It can be assumed that CNN’s multi-classification method is concepts and categories
learned in the process of embodies. Therefore, we studied whether language learning is
possible through mapping of longer sentences based on the multi-category classification in
the preceding chapter and the Hanoi Tower problem inference through RNN. In this chapter,
AI will try to talk directly about the next action after observing the current state and the
participants’ actions. For example, after confirming that the disks are stacked on the left, we
will verbally command the participant to move the topmost disk to the center or to the right.
In this way, the participant seeks to solve the Tower of Hanoi problem only by following the
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verbal instructions of artificial intelligence. In addition, when a supervisor, that is, a human
gives verbal instructions to artificial intelligence, we want to implement a simulation that can
understand the verbal instructions and solve puzzles. The purpose of this simulation is to
make it possible to understand language and make inferences by mapping images, or, more
precisely, images of states and actions surrounding us with language.

9.2 Background and related work

9.2.1 Cognitive Development Theory and Embodied cognition

In our study, Piaget’s theory of cognitive development serves as a starting point. According
to the Piaget’s theory of cognitive development, infancy depends on behavior and perception,
and in childhood, children understand observable aspects of reality. As a child becomes a
young man, he becomes increasingly aware of abstract rules and principles. These stages of
cognitive development involve many aspects of mental development, including reasoning,
language, morals and memory. Piaget believed that children can build knowledge when
they actively participate in cognitive development and interact with the world ( Piaget, Jean
[112], Piaget and Cook [111]).

Therefore, the research in this chapter is based on Piaget’s theory of cognitive devel-
opment. In particular, we carefully looked at the sensorimotor stage, which is an early
cognitive development stage. This is because infants acquire a basic understanding of the
world around them through sensory and motor skills. Infants’ innate abilities (sight, hearing,
smell, taste and touch) are closely coupled with constantly developing bodily functions.
Infants acquire cognitive abilities about themselves and their surroundings through constant
touch, grasping, and tasting. They experience the world and gain knowledge through their
senses and movements. In addition, through repeated trial and error, children discover more
about the world around them.

The main debates in cognitive development are nature and nurture, i.e. birth theory and
empirical theory. However, many agree that this is the wrong dichotomy. Much evidence from
life sciences and behavioral sciences shows that from the very beginning of development, the
activity of genes interacts with events and experiences in the environment. Another issue is
whether cultural and social experiences relate to the evolutionary change of thinking. Another
question concerns the systematic relationship with non-human animals. Most learning and
cognition are similar in humans and animals.

The Kyoto University research team conducted a memory test to show that chimpanzees
have better photo memory than humans ( Inoue and Matsuzawa [64]). First, the numbers
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1 through 9 appear and disappear quickly on the computer screen. Then the participants
(chimpanzee and students) remembered the numbers and pressed the screen where the
numbers were placed in order. Chimpanzee and college students were tested at different
speeds respectively.

Surprisingly, chimpanzee Ayumu ordered numbers faster and more accurately than
college students. Through experiments, common sense overturned the notion that human
cognitive abilities are better than those of animals. In the case of humans, the research team
says that these photographic memories exist when they are young and gradually deteriorate
as they grow. This can be fully understood under the assumption that our cognitive abilities
are not only created by our brain, but also our body and environment.

In the embodied cognitive theory, it is said that cognitive ability primarily develops based
on body movements, and later develops into abstract concepts and language in the process of
evolution. Therefore, it can be seen that chimpanzees are superior to humans in low-level
intelligence tests, such as the photo memory test, which requires the connection of hand
gestures and visual stimuli.

Let us look at another case. Let’s take a look at the research of Professor Goldin-
Meadow’s team at the University of Chicago Department of Psychology. According to their
research, a study found that children who solve problems by moving their hands freely
showed much better grades ( Goldin-Meadow et al. [50]). According to the published thesis,
students who move their hands freely when solving a problem had a 1.5 times higher rate
of correct answers than those who did not. It is proving that speaking and thinking while
actively using the body is more helpful in improving cognitive abilities.

In addition, a new approach has been proposed in the field of cognitive linguistics, which
has recently developed a theory related to conceptual fusion centering on the metaphorical
meaning of language. Considering that the basis of human language lies in the sensorimotor
activity of the body, the existing Chomsky linguistics-centered approach should be modified
and the weight of cognitive linguistics should be increased ( Knott [71], Chomsky et al. [27])
).

9.2.2 Convolutional Neural Network in Natural Language Processing

In the past decades, many research methods have been proposed for natural language pro-
cessing. In this chapter, we will deal with the problem of natural language processing using
convolutional neural networks. First, let’s look at word embedding, a traditional method
well known in natural language processing. Let us take an example. Suppose you have three
words: France, Paris and the Eiffel Tower in order. In that order, numbers 1, 2, and 3 are
assigned respectively. France can be expressed in the form of a vector of (1,0,0) Paris (0,1,0)

131



Understanding Natural Language with Convolutional Neural Networks for Problem solving

Fig. 9.1 Chimpanzee Ayumu performing the masking task from Inoue and Matsuzawa [64]
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and Eiffel Tower (0,0,1). This is called one-hot encoding. Each row of the word document
matrix, i.e., the vector representing the document, is equal to the sum of all the word vectors
constituting the document. However, this is an old way of not considering the meaning of
the word at all. Therefore, in order to be able to understand the meaning of words better, an
attempt was made to express words of more dimensions as vectors.

These word embeddings have led to cutting-edge results in natural language processing.
For example, word embedding is used in the stacked denoising autoencoder model for emo-
tional classification according to domain characteristics ( Glorot et al. [49]), or combinatory
categorial autoencoders method is used to learn sentence synthesis using word embedding
( Hermann and Blunsom [58]). This embedding model has shown great results in processing
natural language. Of course, there was a disadvantage that the data space became too large
because all words had to be expressed in the vector space. As a result, there is a problem
that the performance of the analysis technique is weakened. Therefore, natural language
processing researchers further expand the concept of word2vec, where learning is performed
by converting words into vectors and using a neural network structure to input one hot vector
of the word and predict the one-hot vector value of the surrounding words ( Mikolov et al.
[84]).

In this way, word embedding showed great results in various natural language processing
such as emotion analysis, summarization, and QA. This embedding model was a simple
neural network with few hidden layers. However, in parallel with the development of deep
learning, a new consideration of the embedding method was needed. Therefore, to output
multi-category prediction results, multi-task learning using a convolution neural network was
used. ( Collobert and Weston [33]) In order to improve the performance of word embedding,
there is a need for an efficient function that extracts high-level features from n-grams. In
addition, the convolutional neural network had the advantage of being able to extract key
n-gram features from input sentences. Since these abstracted features could be very useful in
problems such as summarization, sentiment analysis, machine translation, and QA, natural
language processing through the use of a convolutional neural network (CNN) becomes more
and more utilized. In outputting multi-category prediction results, convolutional modeling
was used to solve natural language processing problems such as part of speech tagging, entity
name recognition, semantic inversion, and language modeling. Therefore, in this chapter, we
want to simulate language recognition based on cnn. In particular, learning of concepts and
categories was studied in the previous chapter. We also want to compare and analyze how
previous learning is helpful for long sentence learning.
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9.3 Model

The CNN model architecture for natural language learning was based on the architecture of
Colobert and Kim ( Mikolov et al. [84], Kim [69]). In order to find the sentence that matches
the image, we will construct a model like the figure 9.2. As we mentioned in Chapter 3
(Neural Networks and Deep Learning) and Chapter 8 (Using Convolutional Neural Networks
and Recurrent Neural Network for Human Gesture Recognition and Problem Solving), CNN
is an architecture designed for image processing.

As shown in the figure 3.10, CNN is learned in the form of extracting and preserving
regional information of an image. If the CNN filter for image processing plays a role
of extracting regional information of the image, the text CNN filter preserves the local
information of the text, that is, context information.

Word V1 V2 V3 V4 ... Vp−2 Vp−1 Vp

W1 . . . . ... . . .
W2 . . . . ... . . .
W3 . . . . ... . . .
... . . . . ... . . .

Wn−2 . . . . ... . . .
Wn−1 . . . . ... . . .
Wn . . . . ... . . .

The total number of words per sentence is n. Each of these words is composed of p-
dimensional vectors. The size of the filter is variously adjusted to 1,2,3, and local information
of the sentence is sequentially preserved in the order of the words appearing in the sentence.
If there is one filter, it is called Uni-gram, if there are two, it is called Bi-gram, and if there
is three, it is called Tri-gram. By adjusting the size of the filter in this way, various n-gram
models have been created. A sentence corresponding to each image was embedded. In order
to embed words into vectors, distributed representations such as Word2Vec and GloVe are
used, but our model randomly gave the initial value of the word vector and then used it by
gradually updating it in the learning process like other parameters. As in the figure 9.2, we
match the feature map as many as the number of filters, and then go through the max-pooling
process and output the score as the number of classes.

In Chapter 8, we multilabeled the acquired images. In this chapter, we tried to combine the
CNN that learned multi-labeling and the CNN that learned sentences (Figure 9.3. Through
this, we are trying to prove our hypothesis that sentence learning could be done more
effectively if sentence learning was performed from cnn, which has already learned the
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Fig. 9.2 Convolutional Neural Networks for Sentence Classification

categories of images. Finally, we compared and analyzed what kind of result would be
obtained when the sentence was immediately learned without multi-labeling from the image.

As in the figure 9.3, we split the CNN a little more to make sentence analysis more
effective. We designed the results of the divided CNNs to be summed and released. In
the data pre-processing process, we classified the disk into 5 completely different classes
according to the shape of the disk and the behavior of the participants.

For example, if there is no disk on the left, it has a value of 0 and is classified as 1 for
one, 2 for two, 3 for three, and 4 for four. Similarly, the center and the right were also
classified into 5 classes. Also, the action of the participant was classified into 5 classes
according to which disk was held and which disk was placed. Given a sentence in this way,
five convolutional neural network learning simulations were executed (Figure 9.4)
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Fig. 9.3 A Combined Convolutional Neural Network for Natural Language Processing

Fig. 9.4 A Combined CNN-CNN Model architecture for Natural Language Processing
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9.4 Experiments

In the data preprocessing process, it was classified into 5 classes. The preprocessing data for
sentence learning were classified as shown in the table 9.1.

Table 9.1 Example of data prepossessing

Sentence Ld Md Rd Td Pd
There are fours disks on the right. I take disk1. 0.0 0.0 4.0 1.0 0.0
There is one disk in the middle. There are three disks on the right. 0.0 1.0 3.0 0.0 1.0
I put down disk1.
There is one disk in the middle. There are three disks on the right. 0.0 1.0 3.0 2.0 0.0
I take disk2.
There is one disk in the middle. There are two disks on the right. 0.0 1.0 2.0 0.0 0.0
There is one disk on the left. There is one disk in the middle. 1.0 1.0 2.0 0.0 2.0
There are two disks on the right. I put down disk2.
There is one disk on the left. There is one disk in the middle. 1.0 1.0 2.0 1.0 0.0
There are two disks on the right. I take disk1.

Ld: Disk on the left (LdCategory), Md: Disk in the center (Md-
Category)
Rd: Disk on the right (RdCategory), Td: Take disk (TdCategory)
Pd: Put disk (PdCategory)

As mentioned in the previous section, we did not use distributed representation methods
such as Word2Vec in this chapter. However, we chose a method of randomly initializing
the word vector and updating it in the learning process. In the natural language processing
procedure using computers, it is virtually impossible to process natural language by accepting
sentences as they are. Therefore, when applying a sentence to the natural language processing
mode, we divide the sentence into units called tokens. Also, when passing these token values
to a computer, the token values are converted into numbers and transmitted to facilitate
calculation. This is in the same context as in the previous chapter when we were working on
an image and inputting the input value as a pixel value.

After these data preprocessing and tokenizers, we implemented a CNN model for disk
location and actor actions. The architecture of this model is presented in table 9.2.

Given a sentence, our model showed 94.12 % accuracy with the disk on the left. It
also showed a high probability of accuracy in learning language related to the participants’
behavior. The probability of judging to grasp the disc was 68.91 % and the accuracy of the
disc releasing was 71.43 %. However, when the disk is located in the center and on the right,
it did not show such high probability of accuracy ( Table 9.3). In addition, the accuracy of
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Table 9.2 The summary of Our Convolutional Neural Networks model for Natural Language
Processiing

Layer (type) Output Shape Param
input 3 (InputLayer) (None, 52) 0
embedding 3 (Embedding) (None, 52, 300) 6000000
reshape 3 (Reshape) (None, 52, 300, 1) 0
conv2d 7 (Conv2D) (None, 50, 1, 100) 90100
conv2d 8 (Conv2D) (None, 49, 1, 100) 120100
conv2d 9 (Conv2D) (None, 48, 1, 100) 150100
max pooling2d 7 (MaxPooling2D) (None, 1, 1, 100) 0
max pooling2d 8 (MaxPooling2D) (None, 1, 1, 100) 0
max pooling2d 9 (MaxPooling2D) (None, 1, 1, 100) 0
concatenate 3 (Concatenate) (None, 3, 1, 100) 0
flatten 3 (Flatten) (None, 300) 0
dropout 3 (Dropout) (None, 300) 0
dense 3 (Dense) (None, 5) 1505
Total params: 6,361,805
Trainable params: 6,361,805

the model and the graph of the model loss according to the epoch can be seen in the figures
9.5, 9.6, 9.7, 9.8 and 9.9.

Table 9.3 CNN results for the location of the disk and the participants’ actions

Category Precision
Disk on the left (LdCategory) 94.12 %
Disk in the center (MdCategory) 42.02 %
Disk on the right (RdCategory) 38.66 %
Take disk (TdCategory) 68.91 %
Put disk (PdCategory) 71.43 %

Finally, we tried to map the results of the five text CNNs thus obtained and the data
obtained from the images of the previous chapter. This methodology calculated the correlation
between event 1 and event 2 as a probability measure, as in the Neural Association Model
presented in Section 6.2.2. E1 is the predicted value based on the sentence analysis model,
and E2 is the predicted value based on the image analysis model. Therefore, we tried to find
a probabilistic correlation between the two Pr(E2|E1). The data predicting multi-category
from the test data images were compared with the values of five text CNNs. When the values
match, a predictable sentence was derived from the test image. Our learning model showed
91.6 % accuracy in predicting the learned sentences.
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Fig. 9.5 Accuracy and loss comparison for a natural language processiong - In the case of
left Peg

Fig. 9.6 Accuracy and loss comparison for a natural language processiong - In the case of
middle Peg

139



Understanding Natural Language with Convolutional Neural Networks for Problem solving

Fig. 9.7 Accuracy and loss comparison for a natural language processiong - In the case of
right Peg

Fig. 9.8 Accuracy and loss comparison for a natural language processing - In the case of
taking disk
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Fig. 9.9 Accuracy and loss comparison for a natural language processing - In the case of
putting down disk

9.5 Conclusion and the future

As the participants solved the Tower of Hanoi puzzle, we paid attention to their actions and
the locations of the disks. In this way, we trained the image based on the objects around
the participant and the information acquired from the surrounding scenes. We also tried to
learn the corresponding long sentences from this learned information. This is not a simple
multi-category learning, but a natural language understanding from the learning of images.
Therefore, an element of sentence learning using CNN was added to the learned image.

Before mapping the CNN results obtained by learning multi-category from images,
we investigated what result values are derived only with sentence learning itself. Given a
sentence, the CNN model for sentence learning was able to derive good results when inferring
the location of the disk and the participant’s behavior. After that, we combined the CNN with
multi-category image classification and the CNN with sentence learning. This tested whether
the corresponding long sentence could be inferred when the test image was presented, and we
were able to see interesting possibilities. In the future, we want to research various models
for language learning as a cognitive process. In particular, in solving the problem of the
Tower of Hanoi, we intend to utilize more sophisticated modeling of language, image, and
behavior of participants.
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Chapter 10

Discussion and Conclusion

We introduced embodied cognitive theory as an alternative approach to human cognition.
Cognition relies on experiences that manifested through the body with various sensorimotor
abilities. Sensorimotor processes and perceptual activities cannot be fundamentally separated
from living cognition ( Varela et al. [139]). Therefore, in order to understand the complex
and rich interactions of the body, brain, and world, new concepts, tools, and methods suitable
for studying creative, decentralized and self-organizing phenomena are needed ( Clark
[30, 31]). Therefore, it was considered that embodiedism can be constructed in the following
methodological dimension.

• Cognition is an activity in the world based on the structure and ability of the body.

• Cognition produces meaning in the process of contacting the world through the body.

• Perception cannot be explained independently of the structure and function of the body.

• In order to properly understand and explain cognition, the structure and function of the
body must be considered.

In this way, in order to better understand cognition, we saw that it was necessary to pay
attention to the connection between the sensory movements surrounding our body and the
world. Therefore, we tried to simulate how language learning is possible based on embodied
cognition in this paper.

Deep learning, which imitates the human brain, has continued to develop over the past
decade. In particular, artificial intelligence algorithms are immediately solving difficult
problems that humans cannot solve. Artificial intelligence is proving its usefulness in data
mining, voice recognition, face recognition, banking software, and search engines. We
focused on deep learning to implement human cognitive ability based on an embodied
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cognitive approach. To this end, we collected experience data of participants solving the
Hanoi Tower puzzle. Based on this data, various simulations were performed to make
problem inference.

First, in Chapter 5, we collected the experience data of participants solving the Hanoi
Tower puzzle. In the case of sighted participants, the gestures played a very important role
in generating visual reasoning in the process of problem solving. On the other hand, in the
case of blind participants, a touch plays a very important role in the process of problem
solving. Therefore, we sought to understand the embodied perspective by exploring the
role of gestures in problem solving. We performed various simulations to infer the problem
based on the data obtained from the participants. However, in order to examine how visual
and tactile senses affect problem solving in the future, we would like to perform various
experiments such as changing the color of the disc or preparing a disc with a different tactile
sense. In particular, in order to measure the effect of tactile sensation on cognitive abilities,
we think it is necessary to connect with robots that can realize the tactile sensation of the
hand.

In Chapter 6, we tried to solve the Tower of Hanoi problem through neural network
models. The supervisor training model, Multi-layer Perceptron Model, showed excellent
accuracy in predicting the following behavior. However, the supervisor model has a problem
of continuing coding of data as the number of disks increases. As we know well, human
reasoning and thinking do not require very much learning data. Intuitive reasoning plays
a very important role in human cognitive abilities. Therefore, in order to overcome the
limitations of the supervisor model, we created two inference models. Human cognitive
ability is able to infer the rules of the game simply by watching the game without any
explanation of rules. Therefore, the relational network model for understanding the rules of
the game led to very meaningful results. This is a methodology that considers the relationship
between objects, and it could lead to remarkable results in terms of embodied cognition. We
are going to challenge more diverse research tasks from this chapter 6. For example, we
did not consider the size and color of objects in this study. When our model tries to infer
the rules of the game in consideration of the relationship with the object, we would like to
simulate in the future what results will be obtained when the conditions for the properties of
these objects are presented together.

In problem solving such as the Tower of Hanoi, the simulations in our study were based
on analysis of participants’ movements. In the embodied method of perception, we tried to
model the problem solving of Tower of Hanoi by observing the gestures of the experimental
participants in Chapter 7. In this chapter, we simulated the Hanoi Tower inference model
by applying the Recurrent Neural Network(RNN) model, which is mainly used for natural
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language processing. We obtained sequential data on participants’ movements and gestures
when participants solved the Tower of Hanoi problem. And then, we trained a Recurrent
Neural Network model based on this data. However, the RNN model had a problem that
the shortest path could never be found unless a large number of subjects’ data suggests the
shortest path to problem solving. Therefore, by using the Reinforcement Learning method to
compensate for this, an optimal solution model was developed and good results were obtained.
In the case of the Recurrent Neural Network model, coding was performed according to the
location and movement of the disk. However, in Chapter 7, no coding was made for the
participants’ directive gestures, the act of touching the disk, and the various movements of
their hands when they think. Participants’ directing actions or touching objects play a very
important role in motivating logical reasoning and inference of the next action. Therefore, in
the future, more complex coding will have to be performed based on this model.

In addition, the topic of language learning, which was most interested in our thesis, was
simulated using the Convolutional Neural Network (CNN) in Chapters 8 and 9. The Objects
around us, surrounding scenes, actions, and interactions with objects contain a variety of
semantic information, just like in everyday life. Images obtained in the real world have many
and complex categories. Likewise, the sequential images we collect contain a variety of
semantic information: objects around the participant, their actions, and interactions with the
objects. Therefore, the multi-label image classification task in Chapter 8 helped to understand
more complex semantic information. We extracted a series of images from the video data
of participants who participated in the Hanoi Tower problem solving, classified each image,
and then trained it through CNN. In this simulation, the CNN characterizes the image. If we
change the color of the disk, we need to measure what we want to get. This will have to be
reviewed in the future if the properties of the object change under the conditions of the same
game, e.g. color or shape, what kind of result it will lead to. We also simulated to find the
optimal solution of Tower of Hanoi by combining CNN and RNN models.

In Chapter 9, we simulated how to understand the language given a complete sentence
based on the multi-label image learned in Chapter 8. After that, we mapped the results
of multi-label CNN and text analysis CNN to analyze the effect of sentence learning from
images. According to our results, given an image, the probability of predicting the correct
sentence was very high. This proved that in the case of a model in which concepts and
categories were learned, long sentences could be better understood. In the case of this natural
language analysis, there were not many types of sentences used because it was limited to
solving the Hanoi Tower problem. In the case of presenting sentences in various languages
such as English, French, Korean, etc., we try to find out what understanding the sentences
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will result in. In the future, I would like to proceed with research on interesting topics that
things do.

I set up a thought experiment. Imagine a child and a parent standing in front of a traffic
light. Currently, the traffic light is red. Parents, who are dragging a stroller, stop and stand
on their way. The child learns the present situation through the sense organs. Parents do
not forget to explain that they must stop when the traffic lights turn red. A child who has
experienced countless times of repetitive situations will learn one rule that we must stop
in front of a red light. It begins with the learning of the image received through the sense
organs, and has insight that the situation can be recognized more clearly than when the rules
in language are delivered.However, when crossing the street despite the red light, there are
also problems of various choices, such as whether to follow a human-made legal decision or
a voluntary judgment of artificial intelligence.

Based on these sensory motor organs, multiple sensors are required to acquire informa-
tion through interaction with the environment. This eventually becomes a subject directly
connected to the development of cognitive robots that acquire information through sensory
organs. Therefore, in the future, I would like to participate in a multi-sensor-based cog-
nitive robot research that has an architecture of a perceptual behavior cycle model based
on embodied cognitive theory. Cognitive behavioral intelligence technology, which is the
basis for the development of such cognitive robots, can process multi-sensor data acquired
in the real world without imitating intelligence only by formal symbolic manipulation as in
conventional artificial intelligence. Multi-sensor-based cognitive robots require dynamic and
flexible new intelligent technology that must act immediately based on information input in
real time. In the conceptual framework of embodied cognition, as the mind, brain, body, and
environment are conceptualized as a coherent gestalt that does not separate from each other,
the exploration and application of human cognition through artificial intelligence will also be
considered as embodied approaches. As such, cognitive information processing technology
based on embodied cognition will be a new and big challenge for me.
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Appendix A

Results of Tower of Hanoi experiments
on blind and sighted groups.

A.1 Results of Tower of Hanoi experiments for sighted group
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A.2 Results of Tower of Hanoi experiments for the blind group

A.2.1 Visualization of the correlation matrix
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Results of Tower of Hanoi experiments on blind and sighted groups.
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A.3 Summary Two-Way ANOVA and Interaction Effects Results

A.3 Summary Two-Way ANOVA and Interaction Effects
Results

A.3.1 Interaction effects for deictic gesture

Table A.3 Summary Two-Way ANOVA and Interaction Effects Results for Number of deictic
gesture on first try by condition and group

Df Sum Sq Mean Sq F value Pr(>F)
Condition 1 680.14 680.14 5.82 0.0239
Group 1 75.57 75.57 0.65 0.4294
Condition:Group 1 75.57 75.57 0.65 0.4294
Residuals 24 2806.57 116.94

Table A.4 Summary Two-Way ANOVA and Interaction Effects Results for Number of deictic
gestures on second try by condition and group

Df Sum Sq Mean Sq F value Pr(>F)
Condition 1 440.04 440.04 9.34 0.0054
Group 1 222.89 222.89 4.73 0.0397
Condition:Group 1 222.89 222.89 4.73 0.0397
Residuals 24 1131.14 47.13
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Results of Tower of Hanoi experiments on blind and sighted groups.

A.3.2 Interaction effects for gesture interaction

Table A.5 Summary Two-Way ANOVA and Interaction Effects Results for Number of gesture
interaction on first try by condition and group

Df Sum Sq Mean Sq F value Pr(>F)
Condition 1 1106.29 1106.29 21.32 0.0001
Group 1 112.00 112.00 2.16 0.1547
Condition:Group 1 315.57 315.57 6.08 0.0212
Residuals 24 1245.14 51.88

Table A.6 Summary Two-Way ANOVA and Interaction Effects Results for Number of gesture
interaction on second try by condition and group

Df Sum Sq Mean Sq F value Pr(>F)
Condition 1 612.89 612.89 14.88 0.0008
Group 1 43.75 43.75 1.06 0.3129
Condition:Group 1 116.04 116.04 2.82 0.1062
Residuals 24 988.29 41.18
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Tower of Hanoi Dataset

Appendix B

Tower of Hanoi Dataset

B.1 Tower of Hanoi Resolution Dataset for MLP

B.1.1 Movement encoding

Num. Coding for 4 disks Num. Coding for 4 disks

1 1,1,1,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0 2 0,1,1,1,0,0,0,1,0,0,0,0,1,0,0,0,0,1

3 0,0,1,1,0,0,0,1,0,0,0,1,0,1,0,0,0,1 4 0,0,1,1,0,0,0,0,0,0,1,1,1,0,0,0,1,0

5 0,0,0,1,0,0,0,1,0,0,1,1,0,0,1,1,0,0 6 0,0,1,1,0,0,0,1,0,0,0,1,0,0,1,0,1,0

7 0,0,1,1,0,0,1,1,0,0,0,0,1,0,0,0,1,0 8 0,0,0,1,0,1,1,1,0,0,0,0,1,0,0,0,0,1

9 0,0,0,0,0,1,1,1,0,0,0,1,0,1,0,0,0,1 10 0,0,0,0,0,0,1,1,0,0,1,1,0,1,0,1,0,0

11 0,0,0,1,0,0,0,1,0,0,1,1,0,0,1,1,0,0 12 0,0,1,1,0,0,0,1,0,0,0,1,0,1,0,0,0,1

13 0,0,1,1,0,0,0,0,0,0,1,1,1,0,0,0,1,0 14 0,0,0,1,0,0,0,1,0,0,1,1,1,0,0,0,0,1

15 0,0,0,0,0,0,0,1,0,1,1,1,0,1,0,0,0,1 16 1,1,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1

17 0,1,1,1,0,0,0,0,0,0,0,1,1,0,0,0,1,0 18 0,0,1,1,0,0,0,1,0,0,0,1,1,0,0,0,0,1

19 0,0,0,1,0,0,0,1,0,0,1,1,0,1,0,0,0,1 20 0,0,0,1,0,0,0,0,0,1,1,1,0,0,1,0,1,0

21 0,0,0,1,0,0,0,1,0,0,1,1,1,0,0,0,0,1 22 0,0,0,0,0,0,0,1,0,1,1,1,0,1,0,1,0,0

23 0,0,0,1,0,0,0,0,0,1,1,1,0,0,1,1,0,0 24 0,0,1,1,0,0,0,0,0,0,1,1,0,0,1,0,1,0

25 0,0,1,1,0,0,0,1,0,0,0,1,1,0,0,0,0,1 26 0,0,0,1,0,0,0,1,0,0,1,1,1,0,0,0,1,0

27 0,0,0,0,0,0,1,1,0,0,1,1,0,0,1,0,1,0 28 0,0,0,0,0,1,1,1,0,0,0,1,0,1,0,1,0,0

29 0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,0,0,1 30 0,0,0,1,0,0,0,1,0,0,1,1,1,0,0,0,0,1
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B.1 Tower of Hanoi Resolution Dataset for MLP

Num. Coding for 4 disks Num. Coding for 4 disks

31 0,0,0,0,0,0,0,1,0,1,1,1,0,0,1,0,1,0 32 0,0,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0

33 0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0 34 0,0,1,1,0,0,0,1,0,0,0,1,0,1,0,0,0,1

35 0,0,1,1,0,0,0,0,0,0,1,1,1,0,0,0,1,0 36 0,0,0,1,0,0,0,1,0,0,1,1,1,0,0,0,0,1

37 0,0,0,0,0,0,0,1,0,1,1,1,0,1,0,0,0,1 38 1,1,1,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0

39 0,1,1,1,0,0,0,1,0,0,0,0,1,0,0,0,0,1 40 0,0,1,1,0,0,0,1,0,0,0,1,0,1,0,0,0,1

41 0,0,1,1,0,0,0,0,0,0,1,1,1,0,0,0,1,0 42 0,0,0,1,0,0,0,1,0,0,1,1,0,0,1,0,1,0

43 0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0 44 0,0,1,1,0,0,0,1,0,0,0,1,0,0,1,0,1,0

45 0,0,1,1,0,0,1,1,0,0,0,0,1,0,0,0,1,0 46 0,0,0,1,0,1,1,1,0,0,0,0,1,0,0,0,0,1

47 0,0,0,0,0,1,1,1,0,0,0,1,0,1,0,0,0,1 48 0,0,0,0,0,0,1,1,0,0,1,1,0,1,0,1,0,0

49 0,0,0,1,0,0,0,1,0,0,1,1,0,0,1,0,1,0 50 0,0,0,1,0,0,1,1,0,0,0,1,1,0,0,0,0,1

51 0,0,0,0,0,0,1,1,0,0,1,1,0,1,0,1,0,0 52 0,0,0,1,0,0,0,1,0,0,1,1,1,0,0,0,1,0

53 0,0,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0 54 0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0

55 0,0,1,1,0,0,0,1,0,0,0,1,0,1,0,0,0,1 56 0,0,1,1,0,0,0,0,0,0,1,1,1,0,0,0,1,0

57 0,0,0,1,0,0,0,1,0,0,1,1,1,0,0,0,0,1 58 0,0,0,0,0,0,0,1,0,1,1,1,0,1,0,0,0,1

59 1,1,1,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0 60 0,1,1,1,0,0,0,1,0,0,0,0,1,0,0,0,0,1

61 0,0,1,1,0,0,0,1,0,0,0,1,0,0,1,1,0,0 62 0,1,1,1,0,0,0,1,0,0,0,0,0,1,0,0,0,1

63 0,1,1,1,0,0,0,0,0,0,0,1,1,0,0,0,1,0 64 0,0,1,1,0,0,0,1,0,0,0,1,0,0,1,1,0,0

65 0,1,1,1,0,0,0,1,0,0,0,0,0,1,0,0,0,1 66 0,1,1,1,0,0,0,0,0,0,0,1,1,0,0,0,0,1

67 0,0,1,1,0,0,0,0,0,0,1,1,1,0,0,0,1,0 68 0,0,0,1,0,0,0,1,0,0,1,1,0,0,1,0,1,0

69 0,0,0,1,0,0,1,1,0,0,0,1,0,0,1,1,0,0 70 0,0,1,1,0,0,1,1,0,0,0,0,0,1,0,0,0,1

71 0,0,1,1,0,0,0,1,0,0,0,1,1,0,0,0,1,0 72 0,0,0,1,0,0,1,1,0,0,0,1,0,0,1,0,1,0

73 0,0,0,1,0,1,1,1,0,0,0,0,1,0,0,0,0,1 74 0,0,0,0,0,1,1,1,0,0,0,1,0,1,0,1,0,0

75 0,0,0,1,0,0,1,1,0,0,0,1,1,0,0,0,0,1 76 0,0,0,0,0,0,1,1,0,0,1,1,0,1,0,1,0,0

77 0,0,0,1,0,0,0,1,0,0,1,1,0,0,1,1,0,0 78 0,0,1,1,0,0,0,1,0,0,0,1,0,1,0,0,0,1

79 0,0,1,1,0,0,0,0,0,0,1,1,1,0,0,0,1,0 80 0,0,0,1,0,0,0,1,0,0,1,1,1,0,0,0,0,1

81 0,0,0,0,0,0,0,1,0,1,1,1,0,1,0,0,0,1 82 1,1,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1
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Num. Coding for 4 disks Num. Coding for 4 disks

83 0,1,1,1,0,0,0,0,0,0,0,1,0,0,1,0,1,0 84 0,1,1,1,0,0,0,1,0,0,0,0,0,1,0,0,0,1

85 0,1,1,1,0,0,0,0,0,0,0,1,1,0,0,0,1,0 86 0,0,1,1,0,0,0,1,0,0,0,1,0,0,1,0,1,0

87 0,0,1,1,0,0,1,1,0,0,0,0,1,0,0,0,0,1 88 0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0

89 0,0,1,1,0,0,0,1,0,0,0,1,0,1,0,0,0,1 90 0,0,1,1,0,0,0,0,0,0,1,1,1,0,0,0,0,1

91 0,0,0,1,0,0,0,0,0,1,1,1,1,0,0,0,1,0 92 0,0,0,0,0,0,0,1,0,1,1,1,0,0,1,1,0,0

93 0,0,0,1,0,0,0,1,0,0,1,1,0,0,1,0,1,0 94 0,0,0,1,0,0,1,1,0,0,0,1,1,0,0,0,0,1

95 0,0,0,0,0,0,1,1,0,0,1,1,0,1,0,1,0,0 96 0,0,0,1,0,0,0,1,0,0,1,1,1,0,0,0,1,0

97 0,0,0,0,0,0,1,1,0,0,1,1,0,0,1,0,1,0 98 0,0,0,0,0,1,1,1,0,0,0,1,0,0,1,1,0,0

99 0,0,0,1,0,1,1,1,0,0,0,0,0,1,0,0,0,1 100 0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0

101 0,0,1,1,0,0,0,1,0,0,0,1,0,0,1,1,0,0 102 0,1,1,1,0,0,0,1,0,0,0,0,0,1,0,0,0,1

103 0,1,1,1,0,0,0,0,0,0,0,1,1,0,0,0,1,0 104 0,0,1,1,0,0,0,1,0,0,0,1,1,0,0,0,0,1

105 0,0,0,1,0,0,0,1,0,0,1,1,0,1,0,0,0,1 106 0,0,0,1,0,0,0,0,0,1,1,1,1,0,0,0,1,0

107 0,0,0,0,0,0,0,1,0,1,1,1,0,0,1,0,1,0 108 0,0,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0

109 0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0 110 0,0,1,1,0,0,0,1,0,0,0,1,0,1,0,0,0,1

111 0,0,1,1,0,0,0,0,0,0,1,1,1,0,0,0,1,0 112 0,0,0,1,0,0,0,1,0,0,1,1,1,0,0,0,0,1

113 0,0,0,0,0,0,0,1,0,1,1,1,0,1,0,0,0,1 114 1,1,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1

115 0,1,1,1,0,0,0,0,0,0,0,1,1,0,0,0,1,0 116 0,0,1,1,0,0,0,1,0,0,0,1,0,0,1,0,1,0

117 0,0,1,1,0,0,1,1,0,0,0,0,1,0,0,0,0,1 118 0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0

119 0,0,1,1,0,0,0,1,0,0,0,1,0,1,0,0,0,1 120 0,0,1,1,0,0,0,0,0,0,1,1,1,0,0,0,0,1

121 0,0,0,1,0,0,0,0,0,1,1,1,1,0,0,0,1,0 122 0,0,0,0,0,0,0,1,0,1,1,1,0,0,1,1,0,0

123 0,0,0,1,0,0,0,1,0,0,1,1,0,0,1,0,1,0 124 0,0,0,1,0,0,1,1,0,0,0,1,1,0,0,0,1,0

125 0,0,0,0,0,1,1,1,0,0,0,1,0,0,1,1,0,0 126 0,0,0,1,0,1,1,1,0,0,0,0,0,1,0,1,0,0

127 0,0,1,1,0,0,1,1,0,0,0,0,0,1,0,0,0,1 128 0,0,1,1,0,0,0,1,0,0,0,1,1,0,0,0,1,0

129 0,0,0,1,0,0,1,1,0,0,0,1,0,0,1,1,0,0 130 0,0,1,1,0,0,1,1,0,0,0,0,0,1,0,1,0,0

131 0,1,1,1,0,0,0,1,0,0,0,0,0,1,0,0,0,1 132 0,1,1,1,0,0,0,0,0,0,0,1,1,0,0,0,1,0

133 0,0,1,1,0,0,0,1,0,0,0,1,1,0,0,0,0,1 134 0,0,0,1,0,0,0,1,0,0,1,1,0,1,0,0,0,1
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Num. Coding for 4 disks Num. Coding for 4 disks

135 0,0,0,1,0,0,0,0,0,1,1,1,1,0,0,0,1,0 136 0,0,0,0,0,0,0,1,0,1,1,1,0,0,1,0,1,0

137 0,0,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0 138 0,0,0,1,0,0,1,1,0,0,0,1,1,0,0,0,1,0

139 0,0,0,1,0,0,0,1,0,0,1,1,0,0,1,1,0,0 140 0,0,1,1,0,0,0,1,0,0,0,1,0,1,0,0,0,1

141 0,0,1,1,0,0,0,0,0,0,1,1,1,0,0,0,1,0 142 0,0,0,1,0,0,0,1,0,0,1,1,1,0,0,0,0,1

143 0,0,0,0,0,0,0,1,0,1,1,1,0,1,0,0,0,1 144 1,1,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1

145 0,1,1,1,0,0,0,0,0,0,0,1,1,0,0,0,1,0 146 0,0,1,1,0,0,0,1,0,0,0,1,0,0,1,0,1,0

147 0,0,1,1,0,0,1,1,0,0,0,0,1,0,0,0,0,1 148 0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,0,0,1

149 0,0,0,1,0,0,0,1,0,0,1,1,0,1,0,1,0,0 150 0,0,1,1,0,0,0,0,0,0,1,1,1,0,0,0,1,0

151 0,0,0,1,0,0,0,1,0,0,1,1,0,0,1,0,1,0 152 0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0

153 0,0,1,1,0,0,0,1,0,0,0,1,0,1,0,0,0,1 154 0,0,1,1,0,0,0,0,0,0,1,1,1,0,0,0,0,1

155 0,0,0,1,0,0,0,0,0,1,1,1,1,0,0,0,1,0 156 0,0,0,0,0,0,0,1,0,1,1,1,0,0,1,0,1,0

157 0,0,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0 158 0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0

159 0,0,1,1,0,0,0,1,0,0,0,1,0,0,1,0,1,0 160 0,0,1,1,0,0,1,1,0,0,0,0,0,1,0,0,0,1

161 0,0,1,1,0,0,0,1,0,0,0,1,1,0,0,0,1,0 162 0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,0,0,1

163 0,0,0,1,0,0,0,1,0,0,1,1,1,0,0,0,1,0 164 0,0,0,0,0,0,1,1,0,0,1,1,0,0,1,0,1,0

165 0,0,0,0,0,1,1,1,0,0,0,1,0,0,1,1,0,0 166 0,0,0,1,0,1,1,1,0,0,0,0,0,1,0,1,0,0

167 0,0,1,1,0,0,1,1,0,0,0,0,0,1,0,0,0,1 168 0,0,1,1,0,0,0,1,0,0,0,1,1,0,0,0,1,0

169 0,0,0,1,0,0,1,1,0,0,0,1,0,0,1,1,0,0 170 0,0,1,1,0,0,1,1,0,0,0,0,0,1,0,1,0,0

171 0,1,1,1,0,0,0,1,0,0,0,0,0,1,0,0,0,1 172 0,1,1,1,0,0,0,0,0,0,0,1,1,0,0,0,0,1

173 0,0,1,1,0,0,0,0,0,0,1,1,1,0,0,0,1,0 174 0,0,0,1,0,0,0,1,0,0,1,1,0,0,1,0,1,0

175 0,0,0,1,0,0,1,1,0,0,0,1,1,0,0,0,0,1 176 0,0,0,0,0,0,1,1,0,0,1,1,0,1,0,1,0,0

177 0,0,0,1,0,0,0,1,0,0,1,1,0,1,0,0,0,1 178 0,0,0,1,0,0,0,0,0,1,1,1,1,0,0,0,0,1

179 1,1,1,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0 180 0,1,1,1,0,0,0,1,0,0,0,0,1,0,0,0,0,1

181 0,0,1,1,0,0,0,1,0,0,0,1,0,1,0,0,0,1 182 0,0,1,1,0,0,0,0,0,0,1,1,1,0,0,0,1,0

183 0,0,0,1,0,0,0,1,0,0,1,1,0,0,1,1,0,0 184 0,0,1,1,0,0,0,1,0,0,0,1,1,0,0,0,0,1

185 0,0,0,1,0,0,0,1,0,0,1,1,0,0,1,1,0,0 186 0,0,1,1,0,0,0,1,0,0,0,1,0,0,1,0,1,0
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Num. Coding for 4 disks Num. Coding for 4 disks

187 0,0,1,1,0,0,1,1,0,0,0,0,1,0,0,0,0,1 188 0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0

189 0,0,1,1,0,0,0,1,0,0,0,1,0,0,1,0,1,0 190 0,0,1,1,0,0,1,1,0,0,0,0,0,1,0,0,0,1

191 0,0,1,1,0,0,0,1,0,0,0,1,1,0,0,0,1,0 192 0,0,0,1,0,0,1,1,0,0,0,1,0,0,1,0,1,0

193 0,0,0,1,0,1,1,1,0,0,0,0,1,0,0,0,0,1 194 0,0,0,0,0,1,1,1,0,0,0,1,0,1,0,0,0,1

195 0,0,0,0,0,0,1,1,0,0,1,1,0,1,0,1,0,0 196 0,0,0,1,0,0,0,1,0,0,1,1,0,0,1,0,1,0

197 0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0 198 0,0,1,1,0,0,0,1,0,0,0,1,0,1,0,0,0,1

199 0,0,1,1,0,0,0,0,0,0,1,1,1,0,0,0,1,0 200 0,0,0,1,0,0,0,1,0,0,1,1,1,0,0,0,0,1

201 0,0,0,0,0,0,0,1,0,1,1,1,0,1,0,0,0,1 202 1,1,1,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0

203 0,1,1,1,0,0,0,1,0,0,0,0,1,0,0,0,0,1 204 0,0,1,1,0,0,0,1,0,0,0,1,0,1,0,0,0,1

205 0,0,1,1,0,0,0,0,0,0,1,1,1,0,0,0,1,0 206 0,0,0,1,0,0,0,1,0,0,1,1,0,0,1,1,0,0

207 0,0,1,1,0,0,0,1,0,0,0,1,0,0,1,0,1,0 208 0,0,1,1,0,0,1,1,0,0,0,0,1,0,0,0,1,0

209 0,0,0,1,0,1,1,1,0,0,0,0,1,0,0,0,0,1 210 0,0,0,0,0,1,1,1,0,0,0,1,0,1,0,0,0,1

211 0,0,0,0,0,0,1,1,0,0,1,1,0,1,0,1,0,0 212 0,0,0,1,0,0,0,1,0,0,1,1,0,0,1,1,0,0

213 0,0,1,1,0,0,0,1,0,0,0,1,0,1,0,0,0,1 214 0,0,1,1,0,0,0,0,0,0,1,1,1,0,0,0,1,0

215 0,0,0,1,0,0,0,1,0,0,1,1,1,0,0,0,0,1 216 0,0,0,0,0,0,0,1,0,1,1,1,0,1,0,0,0,1

217 1,1,1,1,0,0,0,0,0,0,0,0,1,0,0,0,0,1 218 0,1,1,1,0,0,0,0,0,0,0,1,1,0,0,0,1,0

219 0,0,1,1,0,0,0,1,0,0,0,1,0,0,1,1,0,0 220 0,1,1,1,0,0,0,1,0,0,0,0,0,1,0,0,0,1

221 0,1,1,1,0,0,0,0,0,0,0,1,1,0,0,0,1,0 222 0,0,1,1,0,0,0,1,0,0,0,1,0,1,0,0,0,1

223 0,0,1,1,0,0,0,0,0,0,1,1,1,0,0,0,1,0 224 0,0,0,1,0,0,0,1,0,0,1,1,0,0,1,1,0,0

225 0,0,1,1,0,0,0,1,0,0,0,1,0,0,1,0,1,0 226 0,0,1,1,0,0,1,1,0,0,0,0,1,0,0,0,1,0

227 0,0,0,1,0,1,1,1,0,0,0,0,1,0,0,0,0,1 228 0,0,0,0,0,1,1,1,0,0,0,1,0,1,0,1,0,0

229 0,0,0,1,0,0,1,1,0,0,0,1,1,0,0,0,0,1 230 0,0,0,0,0,0,1,1,0,0,1,1,0,1,0,1,0,0

231 0,0,0,1,0,0,0,1,0,0,1,1,0,0,1,0,1,0 232 0,0,0,1,0,0,1,1,0,0,0,1,1,0,0,0,0,1

233 0,0,0,0,0,0,1,1,0,0,1,1,0,1,0,1,0,0 234 0,0,0,1,0,0,0,1,0,0,1,1,0,0,1,0,1,0

235 0,0,0,1,0,0,1,1,0,0,0,1,1,0,0,0,1,0 236 0,0,0,0,0,1,1,1,0,0,0,1,0,1,0,1,0,0

237 0,0,0,1,0,0,1,1,0,0,0,1,1,0,0,0,0,1 238 0,0,0,0,0,0,1,1,0,0,1,1,0,1,0,1,0,0
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Num. Coding for 4 disks Num. Coding for 4 disks

239 0,0,0,1,0,0,0,1,0,0,1,1,0,0,1,1,0,0 240 0,0,1,1,0,0,0,1,0,0,0,1,0,1,0,0,0,1

241 0,0,1,1,0,0,0,0,0,0,1,1,1,0,0,0,1,0 242 0,0,0,1,0,0,0,1,0,0,1,1,0,1,0,0,0,1

243 0,0,0,1,0,0,0,0,0,1,1,1,1,0,0,0,0,1 244 1,1,1,1,0,0,0,0,0,0,0,0,1,0,0,0,1,0

245 0,1,1,1,0,0,0,1,0,0,0,0,1,0,0,0,0,1 246 0,0,1,1,0,0,0,1,0,0,0,1,0,1,0,0,0,1

247 0,0,1,1,0,0,0,0,0,0,1,1,1,0,0,0,1,0 248 0,0,0,1,0,0,0,1,0,0,1,1,0,0,1,0,1,0

249 0,0,0,1,0,0,1,1,0,0,0,1,0,0,1,1,0,0 250 0,0,1,1,0,0,1,1,0,0,0,0,0,1,0,0,0,1

251 0,0,1,1,0,0,0,1,0,0,0,1,0,0,1,1,0,0 252 0,1,1,1,0,0,0,1,0,0,0,0,0,1,0,0,0,1

253 0,1,1,1,0,0,0,0,0,0,0,1,1,0,0,0,1,0 254 0,0,1,1,0,0,0,1,0,0,0,1,1,0,0,0,0,1

255 0,0,0,1,0,0,0,1,0,0,1,1,0,1,0,0,0,1 256 0,0,0,1,0,0,0,0,0,1,1,1,1,0,0,0,1,0

257 0,0,0,0,0,0,0,1,0,1,1,1,0,0,1,0,1,0 258 0,0,0,0,0,0,1,1,0,0,1,1,0,0,1,1,0,0

259 0,0,0,1,0,0,1,1,0,0,0,1,0,1,0,1,0,0 260 0,0,1,1,0,0,0,1,0,0,0,1,0,0,1,0,1,0

261 0,0,1,1,0,0,1,1,0,0,0,0,1,0,0,0,0,1 262 0,0,0,1,0,0,1,1,0,0,0,1,1,0,0,0,1,0

263 0,0,0,0,0,1,1,1,0,0,0,1,0,0,1,1,0,0 264 0,0,0,1,0,1,1,1,0,0,0,0,1,0,0,0,0,1

265 0,0,0,0,0,1,1,1,0,0,0,1,0,0,1,0,1,0 266 0,0,0,0,1,1,1,1,0,0,0,0,0,1,0,1,0,0

267 0,0,0,1,0,1,1,1,0,0,0,0,0,1,0,0,0,1 268 0,0,0,1,0,0,1,1,0,0,0,1,1,0,0,0,0,1

269 0,0,0,0,0,0,1,1,0,0,1,1,0,1,0,1,0,0 270 0,0,0,1,0,0,0,1,0,0,1,1,0,0,1,0,1,0

271 0,0,0,1,0,0,1,1,0,0,0,1,0,0,1,1,0,0 272 0,0,1,1,0,0,1,1,0,0,0,0,0,1,0,1,0,0

273 0,1,1,1,0,0,0,1,0,0,0,0,0,1,0,0,0,1 274 0,1,1,1,0,0,0,0,0,0,0,1,1,0,0,0,1,0

275 0,0,1,1,0,0,0,1,0,0,0,1,0,1,0,0,0,1 276 0,0,1,1,0,0,0,0,0,0,1,1,1,0,0,0,1,0

277 0,0,0,1,0,0,0,1,0,0,1,1,0,0,1,0,1,0 278 0,0,0,1,0,0,1,1,0,0,0,1,1,0,0,0,0,1

279 0,0,0,0,0,0,1,1,0,0,1,1,0,1,0,1,0,0 280 0,0,0,1,0,0,0,1,0,0,1,1,0,1,0,0,0,1

281 0,0,0,1,0,0,0,0,0,1,1,1,1,0,0,0,0,1
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B.2 Tower of Hanoi Resolution Dataset for Recurrent Neu-
ral Network

B.2.1 Movement encoding

• G0: Initial state

• G1: Move a disk from peg A to peg B

• G2: Move a disk from peg B to peg C

• G3: Move a disk from peg A to peg C

• G4: Move a disk from peg C to peg B

• G5: Move a disk from peg B to peg A

• G6: Move a disk from peg C to peg A
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B.2.2 Sequential data for the solution of TOH

Num. Sequential data for the solution of TOH

1 G0 G1 G3 G2 G1 G6 G4 G1 G3 G2 G5 G6 G2 G1 G3 G2.

2 G0 G1 G3 G2 G1 G6 G4 G1 G3 G2 G5 G6 G2 G1 G3 G2.

3 G0 G3 G1 G4 G3 G2 G4 G5 G3 G5 G6 G4 G3 G1 G4 G3 G5 G2 G3 G4 G6 G5 G2 G1
G3 G2.

4 G0 G1 G3 G2 G1 G4 G5 G4 G1 G3 G2 G5 G4 G3 G5 G1 G6 G5 G2 G1 G3 G2.

5 G0 G3 G1 G4 G3 G5 G3 G4 G6 G2 G5 G4 G2 G1 G4 G3 G6 G2 G5 G1 G6 G2 G3 G1 G6
G4 G1 G3 G5 G2 G3 G5 G4 G2 G1 G6 G4 G2 G3 G5 G4 G6 G2 G1 G4 G3 G5 G2 G3.

6 G0 G1 G3 G6 G2 G1 G6 G2 G3 G1 G4 G6 G2 G1 G4 G3 G5 G3 G5 G6 G2 G1 G3 G2.

7 G0 G3 G1 G4 G3 G2 G6 G2 G3 G1 G6 G4 G1 G6 G2 G5 G6 G2 G3 G1 G4 G3 G5 G2
G3.

8 G0 G3 G1 G4 G3 G6 G2 G4 G3 G2 G5 G4 G3 G2 G1 G4 G5 G4 G3 G5 G6 G3 G1 G4
G6 G2 G5 G6 G2 G3 G4 G3 G6 G2 G4 G3 G2 G1 G4 G6 G5 G2 G1 G3 G2.

9 G0 G3 G4 G2 G1 G4 G3 G5 G2 G3 G1 G6 G4 G3 G5 G1 G4 G6 G2 G5 G6 G2 G1 G3
G2 G1 G4 G6 G5 G2 G1 G3 G2.

10 G0 G3 G1 G4 G3 G5 G2 G3 G1 G6 G4 G1 G6 G5 G2 G1 G6 G5 G2 G1 G3 G2 G1 G4
G6 G2 G6 G2 G1 G3 G2.
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Tower of Hanoi Dataset

Num. Sequential data for the solution of TOH

11 G0 G3 G1 G4 G3 G2 G5 G1 G4 G5 G2 G3 G1 G4 G6 G5 G4 G2 G1 G2 G1 G4 G6 G5
G2 G1 G6 G5 G2 G3 G1 G4 G3 G5 G2 G3.

12 G0 G1 G3 G2 G1 G6 G3 G6 G4 G3 G5 G4 G2 G1 G4 G3 G2 G5 G4 G5 G2 G1 G3 G2.

13 G0 G1 G3 G2 G1 G6 G4 G1 G3 G2 G5 G6 G2 G1 G3 G2.

14 G0 G1 G3 G2 G1 G4 G6 G5 G2 G3 G1 G6 G2 G1 G2 G1 G6 G1 G5 G4 G1 G6 G5 G3
G5 G6 G2 G1 G2 G1 G4 G3 G5 G2 G1.

15 G0 G3 G1 G4 G3 G5 G2 G3 G1 G6 G4 G1 G6 G2 G5 G6 G2 G1 G3 G6 G2 G1 G4 G3
G5 G2 G3.

16 G0 G3 G1 G6 G2 G1 G2 G1 G6 G4 G1 G3 G5 G3 G5 G4 G3 G5 G4 G1 G5 G3 G5 G6
G2 G1 G3 G2.

17 G0 G1 G3 G2 G1 G4 G6 G2 G6 G2 G1 G3 G2 G1 G4 G6 G5 G4 G3 G1 G6 G3 G4 G5
G2 G3 G5 G4 G6 G5 G2 G1 G2 G1 G4 G3 G5 G2 G3.
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B.3 Sequential images and coding

B.3 Sequential images and coding

B.3.1 Sample Coding for Convolutional Neural Network

Filename Image Class

sujet1 000001.png [’RD4’, ’TD1’]

sujet1 000002.png [’RD4’, ’TD1’]

sujet1 000003.png [’RD4’, ’TD1’]

sujet1 000004.png [’RD4’, ’TD1’]

sujet1 000005.png [’RD4’, ’TD1’]

sujet1 000006.png [’RD3’]

sujet1 000007.png [’MD1’, ’RD3’, ’PD1’]
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Tower of Hanoi Dataset

Filename Image Class

sujet1 000008.png [’MD1’, ’RD3’]

sujet1 000009.png [’MD1’, ’RD3’, ’TD2’]

sujet1 000010.png [’MD1’, ’RD3’, ’TD2’]

sujet1 000011.png [’MD1’, ’RD3’, ’TD2’]

sujet1 000012.png [’MD1’, ’RD2’]

sujet1 000013.png [’LD1’, ’MD1’, ’RD2’,
’PD2’]

sujet1 000014.png [’LD1’, ’MD1’, ’RD2’,
’PD2’]

176



B.3 Sequential images and coding

Filename Image Class

sujet1 000015.png [’LD1’, ’MD1’, ’RD2’,
’TD1’]

sujet1 000016.png [’LD1’, ’MD1’, ’RD2’,
’TD1’]

sujet1 000017.png [’LD1’, ’MD1’, ’RD2’,
’TD1’]

sujet1 000018.png [’LD1’, ’MD1’, ’RD2’,
’TD1’]

sujet1 000019.png [’LD1’, ’MD1’, ’RD2’,
’TD1’]

sujet1 000020.png [’LD1’, ’MD1’, ’RD2’,
’TD1’]
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Tower of Hanoi Dataset

B.3.2 Sample Coding for Natural Language Processing

Filename Image Sentence

sujet1 000001.png There are three disks on the
right. I hold disk1

sujet1 000002.png There are three disks on the
right. I hold disk1

sujet1 000003.png There are three disks on the
right. I hold disk1

sujet1 000004.png There are three disks on the
right. I hold disk1

sujet1 000005.png There are three disks on the
right. I take disk1

sujet1 000006.png There are three disks on the
right
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B.3 Sequential images and coding

Filename Image Sentence

sujet1 000008.png There are three disks on the
right. One disk is in the mid-
dle.

sujet1 000009.png There are three disks on the
right. One disk is in the mid-
dle. I take disk2

sujet1 000010.png There are three disks on the
right. One disk is in the mid-
dle. I take disk2

sujet1 000011.png There are three disks on the
right. One disk is in the mid-
dle. I take disk2

sujet1 000012.png There are two disks on the
right. One disk is in the mid-
dle.

sujet1 000013.png There are two disks on the
right. One disk is in the mid-
dle. One disk is on the left. I
put down disk2

sujet1 000014.png There are two disks on the
right. One disk is in the mid-
dle. One disk is on the left. I
put down disk2
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Tower of Hanoi Dataset

Filename Image Sentence

sujet1 000015.png There are two disks on the
right. One disk is in the mid-
dle. One disk is on the left. I
take disk1

sujet1 000016.png There are two disks on the
right. One disk is in the mid-
dle. One disk is on the left. I
take disk1

sujet1 000017.png There are two disks on the
right. One disk is in the mid-
dle. One disk is on the left. I
take disk1

sujet1 000018.png There are two disks on the
right. One disk is in the mid-
dle. One disk is on the left. I
take disk1

sujet1 000019.png There are two disks on the
right. One disk is in the mid-
dle. One disk is on the left. I
take disk1

sujet1 000020.png There are two disks on the
right. One disk is in the mid-
dle. One disk is on the left. I
take disk1
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Appendix C

Convolutional Neural Network - Tower
of Hanoi

C.1 Image processing - kernel

 0 −0.5 0
−0.5 3 −0.5

0 −0.5 0



Fig. C.1 Sharpen operation
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Convolutional Neural Network - Tower of Hanoi

 1 0 −1
0 0 0
−1 0 1



Fig. C.2 Edge detection operation 1

−1 −1 −1
−1 8 −1
−1 −1 −1



Fig. C.3 Edge detection operation 2

−1 0 1
−2 0 2
−1 0 1



Fig. C.4 Edge detection operation 3
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C.1 Image processing - kernel

1
9

1 1 1
1 1 1
1 1 1



Fig. C.5 Box blur operation

1
256


1 4 6 4 1
4 16 24 16 4
6 24 36 24 6
4 16 24 16 4
1 4 6 4 1



Fig. C.6 Gaussian blur 5 × 5
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