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Abstract

Modern computer vision algorithms try to understand the human activity using
3D visible sensors. However, there are inherent problems using 2D visible sensors
as a data source. First, visible light images are sensitive to illumination changes
and background clutter. Second, the 3D structural information of the scene is
degraded when mapping the 3D scene to 2D images. Recently, the easy access to
the RGBD data at real-time frame rate is leading to a revolution in perception and
inspired many new research. Time of Flight (ToF) and multi-view sensors have
been used to model the 3D structure of the scene.

Otherwise, infrared thermography (IRT), also known as thermal imaging, is an
ideal technology to investigate thermal anomalie under different circumstances
because it provides complete thermal images of an object with no physical attach-
ments (nonintrusive). IRT is now being introduced to a wide range of different
applications, such as medical diagnostic and surveillance.

However, finding meaningful features from a time series data from thermal video
is still a challenging problem, especially for event detection. This problem is
particularly hard due to enormous variations in visual and motion appearance of
object, moving background, occlusions and thermal noise.

In this thesis, we propose a framework for the detection of visual events in ther-
mal video and 3d human actions in RGBD data. Despite differences in the ap-
plications, the associated fundamental problems share numerous properties, for
instance the necessity of handling vision-based approach for the automatic recog-
nition of events.

� The first part of the thesis deals with the recognition of events in thermal
video. In this context, the use of time series is challenging due to the graphi-
cal nature which exposes hidden patterns and structural changes in data. In this
study, we investigated the use of visual texture patterns for time series classifica-
tion. Our principal aim was to develop a general framework for time series data
mining based on event analysis with an application to the medical domain. In
particular, we are interested to pain/no-pain detection using parametric statistics
and shape descriptors in order to analyze and to classify time 2D distribution data
sets.

We first extracted automatically thermal-visual facial features from each face con-
sidered as the region of interest (ROI) of the image.
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We proposed two feature descriptors for the signal pattern of interest (POI) which
efficiently exploits the dependence between time and frequency in one-dimension
(1D) signal. The original signal is extracted directly from local patch in ROI.
The first method is based on non-redundant temporal local binary pattern
(NRTLBP).
The second approach propose a topological persistence descriptor (TP) for ex-
tracting and filtering local extrema of 1D signal. Local minima and local maxima
are extracted, paired, and sorted according to their persistence.
The final representation of an event is a completely new feature vector of all
paired critical values. These features provide many benefits for many applications
to get a fast estimation of the event in dynamic time series data.
Both methods are validated using an Extreme Learning Machine (ELM) and Sup-
port vector Machine (SVM) classifiers.
Experimental results on a real thermal-based data set ”Pain in Preterm Infants”
(PPI), which is captured in a real condition monitoring environment, show
that the proposed methods successfully capture temporal changes in events and
achieve higher recognition rates. PPI dataset was developed in the context of
Infant pain project, a french project supported by the French National Research
Agency Projects for science (ANR).

� In the second part of the thesis, we investigate the problem of recogniz-
ing human activities in different application scenarios: controlled video environ-
ment(e.g. indoor surveillance) and specially depth or skeletal data (e.g. captured
by Kinect). We focus on developing spatio-temporal features, and applying these
features to identify human activities from a sequence of RGB-D images, i.e.,color
images with depth information.

First, we proposed a view-invariant approach which use joint angles and rela-
tive joint positions as features. These features are quantized into posture visual
words and their temporal transitions are encoded as observation symbols in a Hid-
den Markov Model (HMM). To eliminate rotation dependence in skeletal descrip-
tors, we proposed an approach that combines the covariance descriptor and the
spherical harmonics (SHs). The harmonic representation of 3d shape descriptors
is adapted to skeleton joint-based human action recognition. To improve the ac-
curacy and the convergence speed of the SHs solutions, we proposed an extension
of the model, using quadratic spherical harmonics (QSH) representation, to en-
code pose information in the spatiotemporal space. These SHs representations
are compact and discriminating. For the recognition task, we used ELM classifier.
Our experimental results on a number of popular 3d action datasets show signif-
icant achievements in terms of accuracy, scalability and efficiency in comparison
to alternate methods, of the state-of-the-art.
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1.1 Overview

1.1.1 Thermal Sensing

Thermal imaging has become the first choice today for diagnostic imaging in gen-

eral practice. This technology is changing the practice of the most serious societal

9



10 Chapter 1. Introduction

problems. Until now, most of the vision algorithms and physiological events as-

sessment were built on thermal imaging. However, thermal signature is important

for many specific vision applications such as condition monitoring, dark object

search , and it may bring significant improvement to the current vision tasks in-

cluding health diagnostic, scene recognition under different lighting conditions,

medical analysis, legal and insurance industries.

Thermal imaging technology does not replace or diminish the value of existing

visible-bases vision methods. They too are advancing in quality and effectiveness.

Thermal imaging simply provides access into earlier and safer diagnosis for many

complex cases and degenerative conditions.

Thermal imaging is so safe and effective that it is becoming of interest to allevi-

ate some problems attached to standard imaging techniques. In a thermal image

that consists of objects in a scene, object structure can be easily extracted from the

background regardless of lighting conditions and colors of the foreground surfaces

and backgrounds, because the temperatures of the human body and background

are different in most situations. In other side, thermal image analysis can be in-

vestigated to detect at a distance facial patterns of anxiety, alertness, which will

help a specialist distinguish pain patterns as physical or psychogenic, or even re-

veal underlying pain issues.

The rapid progressive development of infrared cameras (passive sensor), give us

easy access to the thermal signature data at a higher resolution. The easy access

to real-time thermal data is simply provides access into safer diagnosis of temper-

ature distribution, and leading to a revolution in activity and event recognition

task.

Among the many aspects of computer vision, the problem of event recognition in

thermal videos has become an increasingly popular due to its demand and appli-

cations in a range of areas. Some of its application areas are automated condition

monitoring systems, health-care diagnostic and monitoring, and human activity

recognition. The task of event analysis in thermal video involve identifying the

temporal range of an event in a video and sometimes the location of the event.

While there have been increasing efforts recently to tackle this problem specially

in premature assessment application, it remains rather challenging due to com-

pounding issues such as large variation of thermal signature, varied durations of

events, and noise. To the best of our knowledge, there was no literature address-

ing the problem of real event recognition in daily monitoring care system and

thermal data.
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Thermal assistive system equipped with event recognition algorithms can describe

the vital signal to people with visual impairments. Moreover, event prediction

techniques could assist remote monitoring care by reporting abnormal behavior

of objects to health care workers.

We propose to take advantage of this readily available thermal assistive technique

to improve the performance of event recognition algorithms. Especially, we ad-

dress the behavioral responses to pain in Condition Monitoring Neonatal Intensive

Care CMNIC using thermal sensing.

1.1.2 3D imaging

During the last decades vision-based human action recognition has been focused

on traditional 2D imaging technique. It has contributed to the solution of some

of the most topic in the computer vision research. However, 3D data is impor-

tant to overcome the limitations with 2D vision, such as shadow, view-invariant,

occlusion. This 3D structure may achieve significant improvement to the recent

computer vision fields, such as activity analysis, human computer interaction, ac-

tion recognition. and robot vision.

The acquisition of 3D imagery is basically addressed in two techniques. The first

one is to reconstruct the 3D geometry from 2D multiple camera, upon this imag-

ing scheme. 3D reconstruction is limited to the overlapping area of the camera

views, leading to the difficulty understanding its 3D structure. Thus, there might

be valuable information embedded in the 2D image to infer 3D. However, it is

extremely challenging for current computer vision algorithms to reconstruct 3D

from 2D images, due to the problem of the information losses when mapping the

3D geometry into a 2D image. The second way is to model 3D structure directly

from Time of Flight ToF range cameras. Particularly, the first generation of range

sensors were either too expensive, difficult to use in indoor environments, slow

capturing rate, or provided poor estimation of distance.

The development of 3D imaging sensor has progressed rapidly over the past

decade. Recently, the release of the RGB-D cameras at relatively low costs and

easily handle, gives computer vision researchers an easy access to the 3D struc-

tural information at a higher frame rate and resolution. The invention of the

real time RGBD imaging have directed a vision techniques into consumers liv-

ing rooms, and is leading to a revolution in computer vision applications. These

systems provide multimodal data ( 2D image,depth sound, skeleton) that offer a
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rich perception of the environment and human activities. Moreover, RGBD-based

3D sensing is provided the solution to many invariances. Such as simplifying the

segmentation of objects, recognize activities in complex scenes and the detection

of occlusions. Combining the advantages of low-cost and real-time nature of the

RGBD devices. The quality of the depth imaging is competitive, even their are

imperfection issues such the noise, lack of data precision, and occlusion.

However, we propose to take advantage of the availability of RGBD-based hu-

man structure, to contribute with existing computer vision algorithms to improve

skeleton-based action recognition methods. Especially, much of the work pre-

sented in this thesis is proposed to address the problem of human action recog-

nition based on information from depth channel. We show that even under the

many constraints of the quality levels of the RGBD images, the achievements made

by the 3D skeleton structure are still quite encouraging. However, we believe that

the rapid generation of the RGBD sensors will provides better quality depth map

with accurate body articulated data. Which has been made available to the com-

munity to support future work.

1.1.3 3D Human body configuration and pose estimation

The use of 3D data allows for efficient analysis of 3D human actions. While 2D hu-

man action recognition has received high interest during the last decade, 3D hu-

man action recognition is still a less explored field. Relatively few authors have so

far reported work on human motion capture, body modeling, pose estimation and

action recognition in more general [Ziming et al., 2008, Moeslund et al., 2006,

Poppe, 2010, Weinland et al., 2011]. In recent years, a wide range of applica-

tions using 3D human body modeling, pose estimation and activity recognition

has been introduced. To comply with the requirements of these applications, and

based on different kinds of systems for data acquisition. However, pose estima-

tion and tracking of articulated human body is related to estimating the dynamic

configuration of the 3D human body (such as joints locations and joints angle)

from a single image or a video sequence.

Related approaches include global and local body pose estimation, and body part

estimation. Additionally, the output 3D pose information is also a rich and view-

invariant representation for action recognition [Poppe, 2010]. Among the recent

studies, the most extensive researches are focused on the 3D body skeleton rep-

resentation, which refer to the use of the 3D joints position captured by RGBD
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sensor as initial input to the 3D body pose representation. Among 3D human

action recognition methods, most of methods have the strategy of using a wide

range of depth, pose, or image features, and do not required predefined body

model. However, the approaches usually use the 3D skeleton joint configuration,

depth with joints position, and multiple cues in order to represent the 3D human

actions.

The extensive goal is to be able to achieve efficient action recognition applicable

for, e.g., advanced human computer interaction, video surveillance, sport motion

analysis automatic activity analysis and behavior understanding. We contribute to

this field by providing algorithms constituting a pipeline from 3D skeleton body

representations to action recognition using 3D data. The algorithms, demon-

strated here, are in line with the recent development of RGBD imaging and RGBD

perception.

1.1.4 Human action recognition

In computer vision, human action recognition consists to encode an action com-

ponent from a video or image sequences. Action recognition has been an impor-

tant topic in domains of applications include surveillance systems, video analysis,

mixed reality, face analysis, object tracking and video-indexing. The problem of

understanding human actions is complicated by many issues, including the fact

that actions are dynamic and may not typically be recognized by simple attention

to single moments in time [Lui and Beveridge, 2011]. Action recognition is fur-

ther complicated by the variation between people and even between instances of

a single person. However, , successful action recognition demands either explicit

or implicit detect and analyze activities from sensors, e.g. a sequence of imaging,

either captured by RGB cameras, range sensors, or a RGBD sensors.

The field of action representation and recognition is relatively old. In the last

few decades, action recognition has been extensively researched while there is

still not much mature for many real-life applications. Human action recogni-

tion has been extensively researched through methods focused on learning and

recognizing actions from image sequences taken by a single monocular camera

[Turaga et al., 2008]. The major issue with this data type come from the diffi-

culty such as considerable loss of information during capture process of articu-

lated human motion, which limits the performance of video-based human action

recognition. Earlier work on human action recognition in video, stretching from

human model and trajectory towards holistic and local representations methods.
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Depending on the looking situation, various definitions are provided to define

action or activity. [Lan et al., 2010], define action; to denote a simple, atomic

movement performed by a single person. and activity; to refer to a more complex

scenario that involves a group of people. Research on atomic action recogni-

tion from 3D have been proposed recently, especially after easy access of 3D data

become available. In this thesis, we will cover atomic action recognition, daily

activity recognition, gaming action captured by 3D RGBD camera.

The challenges of human action recognition can be enumerated into four major

challenges. The first is low level challenges, the second challenge is view change.

The third challenge is scale variance. The fourth challenge is intra-class variance

and inter-class similarity of actions. These are the major types of difficulty of

action recognition from traditional 2D image sequences. The introduction of 3D

data subsequently solves these issues. Moreover, 3D data can alleviate low level

challenge by providing the structure information of the scene. Despite the second

challenge is solved partially by introducing multiple synchronized cameras for a

traditional 2D acquisition, the problem is still inherited for recognition from range

images, though, because the range image only take into account one side of the

object in view. View invariant issue can be alleviated using single depth camera by

providing the accurate depth map and skeletal joint information, and recognition

algorithm based on these information. The scale variance can be easily adjusted

in depth imaging, because the human body dimension can be estimated from the

depth data. The fourth challenge remains a difficult issue for most recognition

algorithms due to various type of data perspective.

1.2 Datasets for action and event recognition

In this section, we present four popular state-of-the-art 3D action recognition

datasets captured by RGBD camera. and one big and very challenging dataset,

which contain more challenging videos, with physiological and physical events of

prematures daily care and behaviors monitoring using thermal video. This dataset

is provided by the ANR project which was created with the help of medical scien-

tists as a real benchmark to develop methods in the field of the prematures events

diagnostic.

The presented datasets are used throughout this thesis work to evaluate the pro-

posed approaches. We start with very challenging datasets containing thermal
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videos of infant profile during daily care of condition monitoring. For simplicity

we denote this dataset by Pretherm. Then we further, go beyond this dataset,

evaluate with relatively simple datasets containing videos of one person perform

single action at a time, like the UTKinect-Action dataset and the Florence dataset.

Although these datasets contain a small number of relatively simple actions, they

have been widely used in recently for RGBD-based action recognition. Therefore,

they allow us to compare the proposed techniques with many existing state-of-

the-art methods. Although these datasets contain a small number of relatively

simple actions, they have been widely used in recent years for evaluation.

Next, we extend an experiments on more realistic datasets. We demonstrate the

MSR-3D Action dataset and the gaming 3D dataset, which contains a large set of

videos with more challenging, and enumerates a complex activities of daily living

and gaming.

1.2.1 Pretherm dataset

In this section, we demonstrate the real dataset that was used in this thesis. This

non-public dataset is provided with the help of the project team: Pr. François

Jouen, Pr. Michèle Molina, and Pr. Bernard Guillois (CHU of Caen). This project

is supported by ANR project to assess the event indicators of premature infants

in a realistic fashion. Physiological and behavioral events for condition monitor-

ing assessment in premature infants are included. The dataset was captured by

using a thermal camera during daily care monitoring and is composed of 30 RGB

color and thermal videos of 30 neonates. The image resolution was 120 × 100

pixels. Events and distress behaviors series in neonates include increased body

temperature, facial expression, heartbeat, and body movement. In this thesis, we

focus on the problem of event recognition in premature infants by using thermal

signatures of the face.

A video of each infant was recorded in one session and included physiological and

behavior status monitoring. The video sequences contain the normal event in the

beginning, the pain event, and post-pain event. The length of the event sequence

varies between 200 and 1000 frames. The main challenges of the Pretherm

dataset are: head movement of the infant, occlusion, and opening and closing the

incubator. Among 30 video, we have selected 20 video from this dataset. Sample

video frames from the Pretherm dataset are presented in Figure 1.1 . Figure 1.2

illustrates a series of raw thermal plots along the corresponding event to which

the premature infant responded. These plots are obtained along the temporal
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evolution of the local facial temperature.

Figure 1.1: Sample Images from Pretherm dataset of the 5 infants

1.2.2 UTKinect action dataset

The UTKinect Action dataset (for simplicity the UTKinect dataset) has been in-

troduced by [Xia et al., 2012]. It contains videos of 10 types of human actions.

The full list of actions is: walk, sit down, stand up, pick up, carry, throw, push,

pull, wave and clap hands. Each action is performed 2 times by 10 different sub-

jects. The sequences are recorder using a single stationary Kinect camera with 30

frames per second.The resolution of the depth map is 320× 240 and resolution of

the RGB image is 640×480pixel. In total, the dataset contains 200 action samples

and the 3D locations of 20 joints were included in the dataset. The length of sam-

ple actions ranges from 5 to 120 frames. Sample RGBD images from the dataset

are shown in Figure 1.3. Note that we only use the information from the skeleton

joints for action recognition in our algorithm. This dataset is challenging to apply

as most of the actions involve view point and high intra-class variations.

1.2.3 Florence action-3D dataset

Florence3D-Action has been introduced by [Seidenari et al., 2013]. This dataset

is constructed with a RGBD sensor and includes 9 activities performed by 10 dif-

ferent subjects. Each subject performs every action two or three times. The full

list of actions is: wave, drink from a bottle, answer phone, clap, tight lace, sit

down, stand up, read watch, bow. As was suggested in [Seidenari et al., 2013]

215 sequences are used in total. The 3D locations of 15 joints are included in

the dataset as well. The main challenges of the Florence dataset are: high intra-

class variations (same action is performed using left hand in some sequences and
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Table 1.1: The three action subsets (AS) of MSR Action 3D dataset as defined in [10]

As1 As2 As3
Horizontal arm wave High arm wave High throw

Hand catch Hammer Forward kick
Draw x Forward punch Side kick

Draw tick High throw Jogging
Draw circle Hand clap Tennis swing

Two hand wave Bend Tennis serve
Forward kick Tennis serve Golf swing

Pickup & throw Side boxing Pickup & throw

right hand in some other) and the presence of actions like drink from a bottle and

answer phone which are quite similar to each other.

1.2.4 MSR action-3D dataset

The MSR Action 3D dataset has been introduced by [Wanqing et al., 2010]. This

dataset contains 20 different actions, performed by ten different subjects and with

up to three repetitions making a total of 567 sequences. The 3D locations of 20

joints were included in the dataset. The dataset is captured using a Kinect de-

vice. Three channels are recorded: depth maps, skeleton joint positions, and RGB

video. The full list of actions is: high arm wave, horizontal arm wave, hammer,

hand catch, forward punch, high throw, draw x, draw tick, draw circle, hand clap,

two hand wave, side-boxing, bend, forward kick, side kick, jogging, tennis swing,

tennis serve, golf swing and pickup and throw. the authors was further divided

the dataset into AS1, AS2 and AS3 subsets, each consisting of 8 actions as shown

in Table 1.1. This was due to the high computational cost of dealing with the

complete dataset. The AS1 and AS2 subsets were intended to group actions with

similar movement, while AS3 was intended to group complex actions together.

Most of the current methods working with this dataset have also used the subsets

protocol. The reason of dividing the dataset into subsets, is that due to the high

computational cost of dealing with the complete dataset.

1.2.5 Gaming Action-3D Dataset

The A Gaming Action Dataset (in short G3D dataset) has been introduced by

[Bloom et al., 2012]. for real-time action recognition in gaming containing syn-



18 Chapter 1. Introduction

chronized video, depth and skeleton data. Each skeleton contains the player’s po-

sition and pose. The pose comprises of 20 joints. It contains of 20 types of gaming

actions performed by 10 subjects, Each subject performs every action three times.

The list of actions is: punch right, punch left, kick right, kick left, defend, golf

swing, tennis swing forehand, tennis swing backhand, tennis serve, throw bowl-

ing ball, aim and fire gun, walk, run, jump, climb, crouch, steer a car, wave, flap

and clap. In total there are 234 sequences.

1.3 Contributions and organization of manuscript

1.3.1 Problem statement and objectives

Our goal is to recognize event and 3D human actions recognition, from ther-

mal and visual video sequences. Although a lot of methods have been proposed

for event and action recognition, few results are available in the literature about

thermal and 3D imaging. Similarly, it should be noted that very little works in lit-

erature has been done for multiple events recognition. This is due to the fact that

event recognition, as well as activity recognition problems face a lot of common

challenges, which can be described as follows:

Poor information. As opposed to traditional images, skeleton information are

very poor on texture information , and it is therefore difficult to extract local fea-

tures of the target object from the scene. This makes it necessary to resort to

methods taking into account a several difficulties such as, lack of precision and

occlusions, caused by body parts or other objects present in the scene. Therefore,

in order to provide robustness to human action recognition, possible errors in

skeletal data should be considered, either improving the skeleton joint represen-

tation, or relying on fusion multiple features as 3D (volume) or 2D (silhouette)

depth-based information.

In contrast to 3D action, event description in thermal video such as vital

signal, physiological behavior of the patients, have the limitation of fore-

ground/background suppression, noise, and facial or body characteristic.

Occlusion. Occlusion problems are inevitable in action recognition. In a video

sequence, the occlusion problem usually appears in the video areas captured from

crowded environments such as airports or supermarkets. There is another kind of

occlusions in activity recognition, called the self-occlusion problem, which is due

to motion overlapping in the same region. In general, it is difficult to deal with
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occlusion problems in video processing.

Inter-class and intra-class variations. Inter-class and intra-class variations are

the central issues of any pattern recognition problem. They characterize the diffi-

culty of the problem. In action recognition, intra-class variations are often larger

than inter-class variations. In the case of activity recognition, the intra-class vari-

ation between postures of the same class is usually high for many actions, e.g.

a walking person may be from left to the right, from right to the left or directly

facing the camera. Also, different people perform different actions in different

ways, e.g. walking actions can differ in speed and stride length. In addition, the

inter-class variation is low for many actions of different classes, e.g. slow running

resembles jogging although the application might require to differentiate of these

two activities. A successful recognition approach should be able to deal with these

difficulties.

Practically, event and action recognition often consist of three main stages:

• Feature extraction and Representation: this stage first extracts features from

actions of interest, which can be either global or local. Then, action is rep-

resented by the features.

• Learning models: machine learning algorithms, either generative or dis-

criminative, are used to learn action models. The following learning meth-

ods are often employed: Support vector machines (SVM), Baysian networks,

adaboost, Hidden Markov Models (HMM), conditional random fields (CRF),

Extreme Learning Machine etc.

• Recognition: this step decides if action instances are present in the scene

(image or video) using the models learned from the above step.

In this thesis, our main objective is to develop a new solutions to event-based

thermal video and 3D skeleton-based human action recognition problems, respec-

tively.

1.3.2 Main contributions

The goal of this thesis is the recognition of events and human actions from thermal

and 3D RGBD sensors respectively.

The first part of our work is based on non redundant local features and topological

persistence (TP), which are employed for events descriptions from thermal video.
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According to our knowledge, there was few literature addressing the problem

of events recognition of premature infant from the thermal imaging in the past.

The second part of this work aim to address skeleton-based action recognition by

introducing a new method for 3D skeleton joint-based human actions recognition

in RGBD videos. As discussed so far, we formulate algorithms of body skeleton

representation for action recognition. I summarized the contribution into the

following 4 aspects:

Events recognition from thermal imaging: We propose an approaches on event

recognition from thermal imaging that are able to represent the temporal evo-

lution of thermal signature through time series, which extracted from the facial

region of interest. Our approaches are based on a Temporal Local Binary Features

and one dimension topological computation techniques to encode the temporal

variation of thermal signature. These approaches enable the recognizer to dis-

criminate the event in thermal video, which provide initialization of a variety of

realistic tasks such as medical assessment, and preliminary health diagnosis of

prematures infant in a condition monitoring system. These works were published

in parts in [All alwani et. al.2014c], and [Al Alwani et.al. 2015d].

Relative angles features for pose-based action recognition: We developed a

novel features for action recognition using skeletal joints information. The pro-

posed method introduced a view invariant feature by computing the relative an-

gles between joints in orthogonal planes. We investigate the performance of the

proposed on a 3D skeleton-based action datasets. This contribution was published

in [Al Alwani et al., 2014c].

Spherical harmonics for skeleton-based human action recognition: We pro-

posed a novel temporal representation of local body joints for 3D skeleton se-

quence that especially maps the spherical orientations of the local joints in spheri-

cal harmonics domain and gives robust and discerning descriptions of the skeleton

joints displacement over the sequence time. This spherical harmonics offer the

possibility to provide the abstraction of local joint movement, which is reliable in

many real-world. This contribution was published in [Al Alwani et.al. 2015a].

Spatio-temporal representation of 3-D skeleton joints-based action recogni-
tion using modified spherical harmonics: We extended the idea of spherical

harmonics with spatiotemporal distribution of skeleton joints. To achieve this, we

develop the real part of the SHs and use the modified part of SHs to extract the

harmonics components of the skeleton joints in spatiotemporal domain. We show

how to incorporate the modified SHs in spatiotemporal constraint to improve ac-
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curacy for human action recognition. This work was submitted in [Al Alwani et.al.

2015b][Al Alwani et.al. 2015c].

1.3.3 Thesis roadmap

This thesis consists of seven chapters with the current chapter being the first. The

remainder of this thesis is organized in six chapters each consists of previously

published work. A brief description of the consecutive chapters is as follows:

In chapter two, we review existing literature focusing on the most related and

prominent state-of-the-art research techniques related to our work. In chapter

three we present a new approaches for event recognition in thermal video. The

new approaches are based on temporal evolution representations of thermal fea-

tures using local Temporal pattern and topological persistence. We apply these

approaches to encode the event in premature infant condition monitoring. This

contribution can easily be applicable in diagnostic and assessment routines to help

with the daily care monitoring system.

Chapters 4, 5 , and 6, present our contributions to skeleton-based human action

recognition, respectively.

In chapter 4, we describe the view invariant method of skeleton joints representa-

tion using relative angles between primitive joints. In chapter 5 we give details of

computing spherical harmonics on spherical orientation of joints. The proposed

representation combine covariance matrix on spherical components in order to

encodes the temporal evolution and dependency between local joint in explicit

model. In chapter 6, we extend the spherical harmonics calculation into spa-

tiotemporal domain for explicit model of skeleton joints. Which in a natural way

encode local and global skeleton joints movements in a video sequence. In this

chapter we introduce a modified SHs technique for body skeleton representation.

1.3.4 Publications

The publications that result from the work of this Ph.D. thesis are listed below.
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International journals
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Figure 1.2: Samples of temporal evolution for10 infants responses, each signal is
captured from underlying thermal signature of local facial area.( Left panel) Normal
response, (Midd panel) pain response, (Right panel) Post-Pain response.
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Figure 1.3: Sample images from videos of the 10 activities. RGB image frames as
well as the corresponding depth maps [Xia et al., 2012]
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Significant efforts of automatic event recognition has been demonstrated in dif-

ferent scenarios. Based on the diversity of the application areas, researchers have

explored on different aspects of the problem. However, according to the de-

mand an approaches are vary significantly. Event and Activity recognition has

been studied for a long history. Moreover, Past research has mainly focused

on event and activity recognition from video sequences taken by a traditional

2D single camera. a Surveys and reviews on generic action and activity recog-

nition have been published . [Turaga et al., 2008], [Aggarwal and Ryoo, 2011],

[Poppe, 2010], [Ke et al., 2013], [Chaquet et al., 2013], [Jiang et al., 2013].

In general event and activity recognition components often includes: the target

domain, and environment, feature extraction and representation, and the classi-

fication task. Figure 2.1 shows a general block diagram. In contrast to visible

imaging, thermal imaging is used to solve visual-based limitations. Such as poor

performance with illumination variations, low lighting, poses, aging, disguise,

and neuroscientists and psychologists. Numerous applications relate mainly to

the particular fields of security. Such as identification, [Yoshitomi et al., 1997],

object detection and recognition [Andreone et al., 2002, Davis and Keck, 2005,

Dai et al., 2005, Li et al., 2012], medical diagnostic [Pavlidis et al., 2000], and

health assessment [Murthy and Pavlidis, 2005] have been published. This chap-

ter discusses the current state-of-the-arts in a range of topics. Initially, general

techniques for problem solved in thermal video are examined, with discussions of

interest approaches in specific domain. In addition, existing work on 3D human

25
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action recognition from RGBD is discussed, for silhouette, skeletal joint and body

part locations, and local spatiotemporal features, respectively.

2.1 Related work in thermal imaging

Existing studies on feature extraction from thermal videos can be divided

into two groups based on representation. The first group is structural rep-

Figure 2.1: Block diagram of a typical action recognition system
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resentation, where spatial holistic features are obtained using normal detec-

tion algorithms and are used in computer vision applications, such as ob-

ject recognition in dark area and video surveillance. Many researchers pay

their attentions to the problems of robust pedestrian detection and tracking

in infrared imagery [Li et al., 2012], [Yasuno et al., 2004],[Grazia et al., 2005],

[Xu et al., 2005], [Li and Gong, 2010], [Teutsch et al., 2014]. The second group

is based on local and functional signals that are quantified in a temporal fashion

and are used in specific domain applications. Such as health assessment, medical

diagnosis, biomedical domain, and temperature monitoring system of a body. In

this section, we generally review various methods with focus on feature extrac-

tion from a thermal video. The authors in [Mark et al., 2005] used three stages

of pedestrian detection algorithm for a drive assistance system. In this work, the

first step is identifying worm region, which removes all false positives using candi-

date filtering. The object in the region is validated by realizing the morphological

features of an object. Contour saliency map was used in [Wang et al., 2010] to re-

alize human detection in thermal images. Then, a template is produced from the

edge samples as an improved feature vector. In [Bertozzi et al., 2003], shape con-

text descriptor was proposed for pedestrian detection from a thermal video. Local

features were used in [Jungling and Arens, 2009] to build the shape model of

pedestrian detection on thermal data. A method for face identification has been

developed in [Yoshitomi et al., 1997]. The method is based on 2-dimensional

detection of the temperature distribution of the face, using infrared rays. The

measured temperature distribution and the locally averaged temperature are sep-

arately used as input data for a neural network. While the values of shape factors

are used for supervised classification

Various medical-based approaches in the field of thermal signature exam-

ination have been proposed in the literature. In [Farah et al., 2011]and

[Murthy and Pavlidis, 2005], the authors studied respiration behavior-based vi-

tal signal by examining temperature changes around the nasal regions. These

developments enable effective access to a significant effect in biomedical appli-

cations. Adopting face recognition techniques in medical diagnostics is a novel

application area. In [Gunaratne and Sato, 2003], the author used a mesh-based

approach to identify asymmetries in facial expression to determine the presence

of facial motion for patients. The author in [Dai et al., 2001] proposed a method

for monitoring facial expressions of patients. Temperature analysis of the face was

adopted by [?] to explore patterns of facial stress from a distance using thermal

imaging. Research in [Nhan and Chau, 2010] has recently shown a direct rela-
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tion between an individual’s emotional state and facial skin temperature. These

variations can be reliably detected using thermal imaging.

In this thesis, we consider event detection in Condition Monitoring in Neonatal

Intensive Care (NIC) settings. Condition monitoring in NIC is more challenging

because of the possibilities of various problems. Simplistic assumptions in NIC

event detection may no longer be valid in traditional activity settings where differ-

ent behaviors and physical responses to pain such as : Crying, difficulty sleeping,

agitation, frowning, and so on.

2.2 Human action recognition in RGBD sensor

Different developments of action and activity recognition, has been early devoted

for human action representations from intensity images sequence. A variety of

attempting are structured into three categories:

Human model based methods which employ a full 2D model of human

body parts, and action recognition is done using information about posi-

tioning movements of body parts,[Moeslund et al., 2006], [Ali et al., 2007],

[Parameswaran and Chellappa, 2006], [Yilmaz and Shah, ].

Holistic methods, which adopts global body configuration and dynamics to rep-

resent human actions. Comparing to others approaches, holistic representations

are much simpler since they only model global motion and appearance infor-

mation [Yamato et al., 1992], [Bobick and Davis, 2001], [Blank et al., 2005],

[Gorelick et al., 2007], [Weinland and Boyer, 2008] [Ziming et al., 2008],

[Bobick and Davis, 2001]. However, since actor performs an actions in parallel

to the 2D imaging camera view, thus the silhouettes-based feature extracted from

2D images are view-dependent. Also, extracting the correct silhouettes of the

actor can be difficult when there is occlusion or bad lighting conditions.

Local feature methods: local features characterize an appearance and motion

information for a local region in video. Such features are usually extracted

directly from video without additional motion segmentation or human detec-

tion [Laptev and Lindeberg, 2003], [Laptev, ], [Harris and Stephens, 1988],

[Geert et al., 2008], [Wong and Cipolla, 2007], [Dollár et al., 2005], . However,

here we demonstrate the related works on human action recognition from RGBD

images. To this end, as mentioned above. RGBD capture a depth image (D),

along with an RGB image , altogether gives RGBD. Based on the features used,

a depth image can be further provides a 2D silhouette, a 3D silhouettes, or a
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skeleton model. In what follows, we discuss 3D silhouette and skeleton based

approaches, respectively.

2.2.1 Action recognition from 3D silhouette

In a RGBD sequence, the global shape of a human can usually be identified

more easily and accurately. In addition, the depth image provides both the

body shape information along the silhouettes, and the whole side facing the

camera. That is, depth images provides more information about body silhou-

ette. Inspired by representations built from 3D silhouettes, many algorithms

have been proposed for action recognition. [Wanqing et al., 2010] construct a

bag of 3D points from contours of the projections of the 3D depth map to ob-

tain a set of action information . In order to reduce the size of the feature vec-

tor, the method selects a specified number of points at equal distance along the

contours of the projections. [Bingbing et al., 2013] extend the original MHI to

a three-Dimensional Motion History Image (3D-MHI). Two additional channels

of forward-DMHI and backward-DHMI are equipped which encode forward and

backward motion history. [Xiaodong et al., 2012] also project depth maps onto

three orthogonal planes and accumulate the whole sequence generating a depth

motion map (DMM). Histograms of oriented gradients (HOG) are obtained for

each DMM . [Fanello et al., 2013] propose a global Histogram of Oriented Gradi-

ent (GHOG) based on the classic HOG [Dalal et al., 2006], which was proposed

for human detection from RGB images. The GHOG describes the visual appear-

ance of the global silhouettes without splitting the image grid into cells. The

highest response of the depth gradient on the boundary contours reveal the pose

of the person. [Ballin et al., 2012] proposed a 3D grid-based descriptor to esti-

mate the 3D optical flow related to the tracked people from point cloud data.

Relaying on the combination of silhouette shape and optical flow in the same fea-

ture vector, A popular feature is proposed by [Tran et al., 2008]. In their work,

radial histograms of the silhouette shape and the axises of the optical flow are

encoded.

2.2.2 Action recognition from skeletal data

Relying on the articulated nature of the human body, the human body consist-

ing of a set of rigid segments connected by joints,and human motion can be
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considered as a continuous evolution of the spatial configuration of these rigid

segments [Zatsiorsky, 1998]. In computer vision, Existing skeleton-based human

action recognition approaches either focused on extracting the joints or detecting

body parts and tracking them in the temporal domain.

Inspired by the algorithm proposed in [Shotton et al., 2011], Shotton et al. pro-

pose to register the 3D body joint position from a depth image. Resulting an easy

way to handle the skeletal joint locations for action recognition with better accu-

racy. The 3D skeleton joint-based approaches have been explored by various re-

searchers. [Yao et al., 2011] indicated that the application of skeleton data (e.g.,

positions, velocities, and angles of a joint from a human articulated body) out-

performs gray-based features captured by 2D camera in an indoor environment

scenario. In general, many useful features can be initially extracted from RGB-D

skeletal data. The majority of these features can be divided into two: those that

are based on the angular characteristics of joints and those that are based on the

generic 3D coordinate of joints.

In certain action recognition methods, the features are developed in com-

plex models to form the representation of the motion sequences. The

3D joint positions are commonly extracted as features through four mecha-

nisms. First, raw 3D data are recognized directly without any further pro-

cessing [Raptis et al., 2008, Shimada and Taniguchi, 2008, Wang and Lee, 2009].

Second, these data are further processed to address certain challenges

[Barnachon et al., 2013, Wang et al., 2012b, Zhao et al., 2013]. Third, the dis-

tances between each joint can be used as a distance-based feature vector for

each frame [Antônio et al., 2012]. Fourth, the features for the selected joints

can be simply calculated with reference to the relative distance between joints

[Wang et al., 2012b].

In [Hussein et al., 2013], the human body skeleton was interpreted by directly

constructing 3D skeleton joint locations as a covariance descriptor, and the tem-

poral evolutions of the action dynamic were modeled using a temporal hierarchy

of covariance descriptors. In [Lv and Nevatia, 2006a], the 3D coordinates of the

joints were used for a skeleton representation of the human body. Correspond-

ingly, the temporal nature of the action sequence was modeled with a generative

discrete hidden Markov model (HMM), and action recognition was performed us-

ing the multi-class AdaBoost. The view-invariant representation of the human

skeleton was proposed in [Xia et al., 2012] by partitioning the 3D spherical coor-

dinates into angular spaced bins based on the aligned orientations with respect

to a coordinate system registered at the hip center. A generative HMM classi-
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fier, which addresses the temporal nature of pose observations, was then used

to classify each visual code word identified with the cluster method. The pro-

posed work in [Wang et al., 2012b], applied the idea of the pairwise relative lo-

cations of joints to represent the human skeleton. The temporal displacement of

this representation was characterized using the coefficients of a Fourier pyramid

hierarchy. Moreover, the researchers proposed an action let -based approach, in

which the effective joint combinations were selected using a multiple kernel learn-

ing approach. In [Yang and Tian, 2012], the skeleton joints were represented by

combining the temporal and spatial joint relations. To explicitly model the mo-

tion displacement, the researchers adopted a method for skeleton representation

on the basis of relative joint positions, temporal motion of joints, and offset of

joints with respect to the reference frame. The resulting descriptors were pro-

jected onto eigenvectors using PCA. In this case, each frame was described by

an EigenJoint descriptor, and action recognition was performed using the nave

Bayes nearest neighbor. The same scheme was used for the skeleton represen-

tation in [Zhu et al., 2013], in which action recognition was achieved by adopt-

ing the random forest classifier. The view-invariant action representation frame-

work was proposed by [Evangelidis et al., 2014]. In this work, the skeletal quad-

based skeletal feature was adopted to encode the local relation between joints in

quadruple form. Consequently, the 3D similarity invariance was achieved. The re-

searchers also adopted a Fisher kernel representation based on a Gaussian mixture

model. Such a representation generates the skeletal quads and invokes a multi-

level splitting of sequences into segments to integrate the order of sub-actions

into the vector representation. In [Vemulapalli et al., 2014], a human skeleton

was presented as points in the Lie group. The proposed representation explicitly

models the 3D geometric relationships among various body parts using rotations

and translations. Given that the Lie group was a curved manifold, the researchers

mapped all action curves from the Lie group to its Lie algebra, and the temporal

evolutions were modeled with DTW.

Angular direction of joint can be computed, which is invariant to human body

size and view. The work proposed by [Sempena et al., 2011], adopt joint orien-

tation along action sequence to build a feature vector and apply dynamic time

warping onto the feature vector for action recognition. [Bloom et al., 2012] con-

catenates a variety of features like: pairwise joint position difference, joint veloc-

ity, velocity magnitude, joint angle velocity magnitude, and joint angle velocity.

Altogether, 170 dimensional features vector was formed in order to recognize

gaming action. In [Chaudhry et al., 2013], a human skeleton was hierarchically
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grouped into local parts and each part was characterized using bio-inspired shape

features. The temporal nature of these features were encoded using linear dy-

namical systems. Pairwise affinities between joint angle trajectories was intro-

duced in [Ohn Bar and Trivedi, 2013], for skeletal sequences representation. A

sequence of the most informative joints (SMIJ) per action instance was presented

by [Ofli et al., 2014]. This selection is based on joint related measures such as

the moments of the joint angles. Several encoding methods are suggested for the

vector representation of SMIJ.

Researchers also tried the local occupancy pattern to treat an action sequence

as a 4D shape. In this 4D space the 3D orthonormal space around the joint

is partitioned into spatial cell. The number of points that fall into each cell

are counted to obtain the occupancy feature of that cell in certain time range.

[Wang et al., 2012a] defined the random occupancy patterns in the (x; y; z; t) do-

mains, their work combine the skeleton joints features and local occupancy fea-

tures to recognize activities. Partitioning the whole 4D space into sub-volume

was proposed by [Vieira et al., 2012], the authors extracted occupancy patterns

from every partition. hence, the local occupancy pattern is quite sparse. Thus, a

modified-PCA called Orthogonal Class Learning (OCL) is employed to reduce the

length of the feature.
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The event recognition method proposed in this chapter is based on temporal fea-

ture descriptors that are locally extracted from a thermal video. As illustrated in

Figure 3.1, our proposed method includes four main steps:

1) Preprocessing and raw feature extraction step that rotates the images, resizes

the images to 100 × 120 pixels, and crops the images to define only the facial

area. Patches of size m x m pixels are defined over the facial area, and multiple

channels of temporal evolution of the temperature values are calculated from

these patches.

2) A non-redundant-base local feature selection step that calculates the local tem-

poral evolution descriptors from a set of selected channels.

3) Feature selection based on topological persistence (TP) step that calculates the

critical values of a 1D signal.

35
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4) Event recognition step where feature descriptors are used to discriminate the

events by means of extreme learning machine (ELM) and SVM classifiers.

3.1 Spatio-temporal dynamic texture descriptors

3.1.1 Preprocessing and raw features channels

In video preprocessing, the original facial images are first tracked and extracted.

After locating the subject image, the images are thresholded to identify the im-

age foreground from the background. This procedure is achieved by assuming

that the facial temperature distribution is relatively higher than the background.

The images are cropped to include only the facial region (Figure 3.1) to facilitate

the computational procedure of the approach. Then, patches with a dimension

of 20 × 20 pixels are extracted from the tracked facial region. The preprocessing

Figure 3.1: Experimental design
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step emphasizes the dependency of the event’s information contained within dif-

ferent regions of the face, such as cheeks and foreheads. In accordance with our

initial study in [Al Alwani et al., 2014], two raw channels of temperature values

are temporally extracted from the patches, which are defined over the facial re-

gion. These raw features are the maximum and minimum temperature values.

Furthermore, we establish two raw signals for the three-condition events, which

characterize thermal signature in monitoring state. For instance, three events

adopted in this study are normal, pain, and post-pain, respectively. The time se-

ries of each event is shown in Figure 3.2. The figure indicates that the response

nature of each event is initially characterized by the signal temporal evolutions of

that event. However, collecting multiple raw channels of facial samples will ob-

tain the best recognition rates. The raw channels of temperature values are used

as initial input features for the proposed descriptors.

3.1.2 Thermal signature using NRTLBP-based features

In this section, we propose a method for event recognition NIC system from ther-

mal signature based 1-D signal. We use the Non-Redundant Temporal Local Bi-

nary Pattern (NRTLBP) as a descriptor of for the signal Pattern Of Interest (POI)

signal. Moreover, We assume that the layout of subjects is considered for all the

cases in the front view, and ROI is defined over the subject face. In addition, we

build raw thermal signatures for all subjects samples. This is achieved first by

defining local patch as shown in the recognition system which illustrated in the

Figure 3.1. Then the maximum Max and the minimum Min values are computed

from the local patches along the video sequences. For more illustration, we com-

pute the Max and Min temperature values and denote it as raw thermal signals

(we call it raw signals for abbreviation). The raw signals quantify three condition

events, which characterize the monitoring state during daily care. For instance,

normal event, pain event and post-pain event are three events adopted in our

study. We apply the NRTLBP descriptor on the raw thermal signal in order to

extract efficient feature vector. To make the descriptor robust against minor tem-

poral variation and noise, the wavelet decomposition of the raw signal is used in

order to extract the approximation wave-components. Then, NRTLBP is applied

on the wave-components which further provides feature descriptor in wavelet

domain (WNRTLBP). We provide an evaluation of our method using Support Vec-

tor Machine SVM and the real dataset (Pretherm dataset) composed of thermal

videos developed in the context of Infant pain project (a french project supported
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Figure 3.2: Six examples of raw features of six infants response, each panel consist of
three segment. R1, indicate the normal, R2 indicates pain response, and R3 indicates
post-pain response.

by the French National Research Agency Projects for science ANR). Experiments

show that this algorithm achieves superior results on this challenging dataset.
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Non-Redundant Temporal Local Binary Pattern-based features

Once the raw thermal features are extracted, the video sequences is considered as

a collection of raw signals. We denote by Xi = T1, T2, · · · , Tn. i = Max or Min,

and T is the temperature value at each patch. In order to represent the raw sig-

nal in efficient manner we propose the Temporal Local Binary Pattern descriptor,

which is an extension of original 2-D LBP operator into the temporal domain.

Normal LBP has originally been proposed for texture analysis and classifica-

tion [Ojala et al., 2002]. Recently, it has been applied on face recognition

[Timo et al., 2004] and facial expression recognition[Ahonen et al., 2006].

The TLBP operator labels the samples of a signal by thresholding a center sample

against neighborhood set within defined window. We denote by x[n] the sampled

signal, and w is the size of samples window. The TLBP operator on a sample k ∈ w
in is given by:

TLBPw(f [k]) =

w
2
−1∑

q=0

{
sign[f [k + q − w

2
]− f [k]]2q + sign[f [k + q + 1]− f [k]]2q+

w
2

}
(3.1)

where the sign function is given by:

Signf [k] =

{
1 if f ≥ Thr

0 if f < Thr
(3.2)

and where q is the number of sampled points (neighbor samples of k) whose the

distances to k do not exceed the window w. For a M block, a TLBP histogram of

2q bins is computed for feature representation.

Despite that the outcome of the TLBP has been successfully encoded the 1D signal-

based applications. It has limitation when adopted to address the high variability

of local neighborhoods samples. Also the storage ability of TLBP is considered

as a main disadvantage, for instance, the TLBP actually requires the 2K of his-

togram structures for each segment. In the other hand, LBP is sensitive relatively

to the slowly varying signal. Moreover, at a critical points, the difference will

be relatively large, whereas at transition, the differences strictly depends on the

directions of the edge transition. Another aspect of TLBP is called no-redundant

NRTLBP. Intuitively, the NRTLBP considers a TLBP code and its complement as

the same [Nguyen et al., 2010]. It contains information about the distribution

nature over the whole signal and characterizing a statistical description of signal.
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In this work, we adopt a novel extension of the TLPB, called Non-Redundant LBP,

in order to address both of the aforementioned challenges. The NRLBP is defined

by:

NRTLBP (f [k]) = min[TLBP (f [k]), 2q − 1− TLBP (f [k])]. (3.3)

Having obtained the NRTLBP for the whole signal, a histogram vector of the

NRTLBP code is used as a final feature descriptor. Obviously, the number of bins

in the NRTLBP histogram is reduced to the half. Furthermore, compared with

the original TLBP, the NRTLBP provides more discriminative power, and encodes

uniformly the change between the signal samples. Hence, the NRLBP is more

compact and adaptive with the dynamic shape of the signal at various instances

and levels.

NRTLBP of approximated coefficients

The estimated raw feature is subject to error and significant noise. With the fa-

cial region, we may acquire the physiological response in neonatal intensive care

with redundant, mostly weaker and reshaped signal, inaccurate estimations oc-

cur when parts of the facial is occluded and presence of large motion artifact. We

further extend the idea of NRTLBP into a wavelet domain in order to reduce the

noise level, the redundant, an perform efficient feature extraction.

The method is based on using multi-resolution wavelet transform WT to decom-

pose the raw features and build new feature representation. However, WT doesn’t

use any window an tries to decompose a signal into wavelet basis. Moreover, the

WT requires no prior about the samples distribution and provides low computa-

tional cost. The wavelet transform C(j, k) of a finite-energy signal f(t) is defined

as its scalar product with the wavelet Ψjk(t) [Mallat, 2008]. In other words, the

wavelet transform represents the correlation of the signal f(t) and the wavelet

Ψjk(t) as:

ajk =
∑
t

f(t)Ψjk(t). (3.4)

Where Ψ(t) = 2jΨ(2jt − k) is the mother wavelet corresponds to scale j = 1, k

is the translation factor, and j is the scale parameter. A wavelet representation of

a function consists of, a coarse overall approximation aj, and detail coefficients

that influence the function at various scales. Therefore, the approximation coef-

ficients are considered as a feature extraction vector in a wavelet-domain. Then

using NRTLBP for feature description. The smooth change property of the approx-

imation features is illustrated in the Figure 3.3 where each sub-figure shows the
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Figure 3.3: Approximation component of raw features correspond to three kinds of
events. from left to right, normal event, pain, and post-pain event signatures.

feature in wavelet-domain for the corresponding event in the time domain.

Table 3.1: Recognition rate results, from the Max and Min raw features
that are directly applied into SVM

Events Recognition rate% Recognition rate%
(Max Temp.value) (Min Temp. value)

Normal Response 50 60
pain Response 90 60

Post-pain response 50 70
Overall 63.33% 63.33%

Table 3.2: Recognition rate results, using NRTLBP based raw feature
descriptor

Events Recognition rate% Recognition rate%
(Max Temp.value) (Min Temp. value)

Normal Response 80 50
pain Response 90 90

Post-pain response 80 90
Overall 83.33% 76,67%

Table 3.3: Recognition rate results, using WNRTLBP based raw feature
descriptor

Events Recognition rate% Recognition rate%
(Max Temp.value) (Min Temp. value)

Normal Response 90 100
pain Response 100 95

Post-pain response 85 93
Overall 91,667% 96%
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3.1.3 Experiments

In this section, we evaluate the proposed method by experimenting with the

Pretherm dataset . Due to non available of the benchmark related to our method,

we did not attempt a comparison with other methods. Rather, we provide results

only to show that our algorithm works well on a real data.

The premature infant data involves 20 neonates videos. Each includes the subject

behaviors during daily condition monitoring (event and condition are used

interchangeably). All events are performed for each subject and notated by the

clinical during condition monitoring. From each video we select the set of events

which includes normal health event, pain event, and post-pain event. A total

of 60 clips were extracted ranging from N occurrences of normal event, to M

occurrences of pain event and so on.

We divide the clips into three groups of 20 video each. For instance, each group

divided into 2 subset of 10 clips each. In the training phase, we use half of the

group and the normal was used for the test task.

We consider a recognition task for three class problems including the normal

event, pain event and post-pain event respectively. Furthermore, two features

descriptors are used in the experiments. The first one is the descriptor of raw

thermal signal, we denote it by NRTLBP and the second one is the descriptor

based on the approximation components, and we denote it by WNRTLBP. The

number of neighboring samples was set to 4 samples for NRTLBP codes, and the

Daubechies wavelet with one level decomposition was used for approximation

coefficients extraction. We performed the evaluation of our method using linear

SVM.

In all experiments, first subset of each group was used for training and the second

subset was used for testing.

We started the experiment directly by providing the raw features (Max, and Min

raw features) into classifier. The recognition results are in the form of recognition

rate, the results of the first experiment are reported in the Table 3.1.

We also run the test by using NRTLBP descriptor based on two types of raw

features. The results are shown in Table 3.2.

In order to be able to do a full comparison of methods, WNRTLBP based experi-

ments are performed in the same manner as above. Results from this experiment

are presented in Table 3.3.

As can be seen in Table 3.1, the overall performance of both raw features

(i.e. Max and Min values) is poor and did not improve the discrimination
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between the events. Moreover, the direct Max and Min recognition have a lower

performance than NRTLBP and WNRTLBP. Both Max and Min did not provides

local dependency between signal components.

If we compare the results of using the NRTLBP and WNRTLBP descriptors, we

see that the results for both of these descriptors are comparable for individuals

classes. The over all performance of the WNRTLBP is 8.33 % better than NRTLBP

in the case of using the Max raw feature, and 20.33 % better than NRTLBP when

Min raw feature is used. As we can see, the approach based on the wavelet

achieves a good accuracy rate.

It is interesting to note that even this is preliminary study of NIC pain response,

the results from tested real dataset indicate that the three classes could be

separated quite well from each other.

3.2 Topological-based temporal features descriptor

We employ topological computation as a novel 1D signal characterization method

for event recognition in neonatal intensive care system. Topological Persistence

(TP) is used to characterize temporal evolution of the 1D signal based on its

critical attributes. To explore the informative events from a 1D signal, we first

calculate the critical values for each data channel. Then, these critical values are

paired according to the principle of topological persistence to obtain the abstract

profiles of each raw signal.

However, TP 1D is a class for topological attributes that are used to find local

critical points and their persistence in 1D data. Moreover, local minima and

maxima are extracted, related to each other, and sorted with respect to their

persistence. The local minima and maxima values of a signal approximately

characterize the shape abstract of the signal by using only a set of a reduced

number of critical values. By pairing these local critical values in a simple fashion,

we can construct the thermal signature representation.

3.2.1 Topological persistence

Topological persistence has been investigated recently in computer graph mod-

eling [Weinkauf et al., 2010, Brechbühler et al., 1995]. We refer the readers to
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[Edelsbrunner and Harer, 2008] for an excellent review of persistence homology

and to [Hatcher, 2002] for an introduction to simplicity homology.

Let Xi = (T1, T2, ..., TN) denote the ith raw channel of 1D thermal feature and

i = [1, . . . .k]. Let k denote the length of the video sequence. We denote by

ζ : R → R a smooth function, with an extrema component w. If the first-order

derivative of the function ζ is equal to zero, that is, ∂ζ(w) = 0, then ζ(w) has a

critical value of w. Each critical point is then composed of either a local minimum

or a local maximum [Edelsbrunner and Harer, 2008]. We define each s ∈ R that

satisfies ζ(w) ≤ s as a sub level set. We also denote by βi, αi, i = [1, . . . ,m] the

calculated local critical extrema. Then, we arrange the local maxima and minima

from the smallest to the largest value as:

β(1) < β(2) · · · < β(m), α(1) < α(2) · · · < α(m). (3.5)

At a local minimum the sub level set have birth a new component i.e.

M(αi) = M(αi − δ) + 1. (3.6)

In the same sense at a local maximum, the sub-level set has the death of a com-

ponent. Two components then merge into one component. i.e.,

M(βi) = M(βi − δ)− 1. (3.7)

Where δ, the small increase of sub level components. As an example, the critical

values of the signal is illustrated in Figure3.4, it can be noted that the critical

points can be used to reliably characterize the different events.

On the basis of the topological theory, the topological attributes of a topological

space are abstracted by the local variation at extreme points of a smooth function

on that space [Milnor, 1973]. However, the topology space produces pairs (αi, βj)

of critical values such that a new component is generated at αj and vanishes at βi.

The critical points calculated from the above procedure are paired by the follow-

ing rule [Edelsbrunner et al., 2000]; When a new component is introduced with

the local minimum, the new component is identified. At the same time, when

we pass a local maximum with merged two components, we pair the maximum

with the higher of the two local minima of the two components. According to

the paired rule, the extreme points that are paired do not necessarily need to be

contiguous. Similarly, other critical values of the function are paired in the same
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Figure 3.4: Critical points selection from raw thermal signatures which represent
temporal responses of subject sample. Top, normal event, and Bottom, pain events

rule. The procedure of paired critical values is detailed in Figure3.5.

Obviously, the paired extremes vector is the topological parameter that approxi-

mately characterizes the events from a thermal signal. The computed extremes

points TP = [p1, p2, · · · , pN ] are collected in a vector that represents the respec-

tive event feature vector. Before training or testing, TP feature descriptors are

normalized to have the same features length.

3.2.2 Extreme Learning Machine

Event recognition is performed in this section by using two classifiers to assess the

performance of the proposed method. ELM and linear SVM are used to classify the

final feature vectors. The classification task is beyond the scope of this paper. We

only introduce ELM as a new classification. Intuitively, ELM efficiently provides

high-learning accuracy and faster training time compared with other learning al-
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Figure 3.5: A single variable function with N local minima and local maxima. The
critical points are paired and ordered to form the topological persistence

gorithms. Recently, ELM has been extensively devoted to learning single hidden

layer feedforward neural networks (SLFNs) [Huang et al., 2006]. Hidden nodes

in ELM are randomly initialized and do not have to be iteratively tuned. Essen-

tially, the hidden nodes in ELM remain fixed after initialization, while only the

input weight parameters need to be learned. ELM was successfully adopted by

[Minhas et al., 2010] for human activities recognition from video data.

Let xi, yi
Q
i=1 denotes the training samples where xi ∈ RN and yi ∈ RM , the gener-

alized SLFN output of ELM is

yi =
L∑
j=1

ωiψi(τj · χi + λj) = ΩΨ, Y ∈ RQ ∗M. (3.8)

where Ωj ∈ RL∗M is the output weight vector parameter, ψ(.) is the activation

function, and τj ∈ Rd, λjj ∈ R are the hidden node parameters. According to

the learning rule of ELM [Huang et al., 2012], both hidden node parameters are

randomly assigned during the learning phase. During the linear parameter solving

stage of ELM, the weight parameters denoted by ω are solved by minimizing the

training error sense as follows:

min‖ΩΨ−H‖,Ω ∈ RL∗M . (3.9)



3.2. Topological-based temporal features descriptor 47

Where Ψ is the hidden layer output matrix:

Ψ =


ψ1(χ1) · · · ψL(χ1)
...

...
...

ψ1(χN) · · · ψL(χN)

 . (3.10)

and H is the training data matrix denoted as

H =


h11 · · · h1m
...

...
...

hN1 · · · hNm

 . (3.11)

Assuming that the number of hidden neurons L is less than the number of the

training set (i.e., L < Q), the optimal solution to minimize the training error is

given [Huang et al., 2012] by

Ω∗ = Ψ∗H. (3.12)

Where Ψ∗ is the Moore-Penrose generalized inverse of matrix Ψ

[Huang et al., 2012].

In the training phase, the input feature vectors that belong to a set of actions

are expressed in terms of data matrix. Each row of the data matrix represents a

specific action, and the corresponding column vector represents the feature vector.

3.2.3 Experimental design

This section describes the experimental results using the proposed feature de-

scriptions and two classifiers (ELM and SVM) to classify the 60 video clips in

Pretherm dataset into three classes, namely, normal, pain and post-pain. We also

provided results to show that our algorithm works well on real data. We tested

the performance of the proposed method on 60 thermal clips captured from 20

subjects. These clips were divided into three classes: 20 clips of normal, 20 clips

of disease, and 20 clips of post-pain responses. A total of 20 subjects from the

Pretherm dataset were selected. The minimum number of frames that are avail-

able for each clip ranged from 100 to 400 frames.

Actual normal, pain, and post-pain modes for each infant were used to train ELM

and SVM classifiers. For each subject, two local regions that correspond to the
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face and the front area of the facial were selected. In the selection process, two

raw channels were selected, where the infant facial expression reflected a nor-

mal condition, distressed intensity for pain, and a calm response for post-pain.

Recognition tasks of three classes problems were considered. In the experiments,

we labeled the extracted feature vectors as NRTLBP and TP1D descriptors. In the

classification stage, ELM and SVM experiments were performed with both sets of

input descriptors. In all the experiments, we followed the cross-subject protocol

in which half of the subjects were used for the training phase and the normal were

used for testing. The performance of the proposed descriptors was evaluated us-

ing ELM and SVM classifiers.

The feature descriptors of the proposed method clearly related with the facial re-

gion, where the raw feature takes place. Thus, we experimented with two local

patches of size (20 × 20pixels); one patch is located on the front region and the

other on the face region. The size of the patch is small to keep track of the face

region and prevent the patch from biasing toward the background. We selected

maximum Max. and minimum Min. values as raw thermal channels, which were

extracted from each patch.

In all experiments, we followed the cross subject protocol. In which half of the

subjects were used for training phase, and the normal were used for testing.

Results of Experiment 1

In this experiment, local front patch is selected to extract the feature vector. We

evaluated the proposed method using NRTLBP and TP1D descriptors along with

maximum and minimum values of the raw channels. The recognition rates are

reported in Tables 3.4 − 3.9. The results in each table compare the classification

rates of NRTLBP and TP1D along with each of the selected raw channel (i.e., with

maximum and minimum temperature values). The recognition rates reported in

these tables correspond to the following three expression events: normal, pain,

and post-pain. We started the experiment by directly providing the raw features

of the maximum and minimum temperature values into classifiers separately. The

results are reported in Tables 3.4 and 3.5. We also ran the experiment using the

NRTLBP descriptor along with both raw channels. The results are shown in Ta-

bles 3.6 and 3.7 for ELM and SVM, respectively. The performance of the TP1D

descriptor is computed with both raw channels and classifiers. The results of

TP1D performance are reported in Tables 3.8 and 3.9. The results shows the

ability of the proposed feature descriptors to capture temporal evolution. As in-
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dicated in Tables 3.4 and 3.5, the best average recognition rate of ELM is 70%

and 65% for Max and Min, respectively . When directly applying Max and Min

values into the classifiers, the results show poor feature discrimination of these

raw channels, which highlights the challenge in distinguishing event intensity.

Tables 3.6 and 3.7 demonstrate the superior performance of the ELM classifier to

that of SVM in both Max and Min temperature values. Moreover, the combina-

tion of NRTLBP with the maximum temperature value and ELM produced results

that are better than those of the combination of NRTLBP with SVM in both raw

channels. Furthermore, the accuracy of NRTLBP+ELM is 3.33% better than the

accuracy of NRTLBP+SVM using the Max value and 8.33% better than the accu-

racy of NRTLBP+SVM using the Min value. These results clearly demonstrate the

superiority of the proposed NRTLBP representation over the results in Tables 3.4

and 3.5, and suggests that the combination of NRTLBP with ELM is well suited to

encode temporal evolution in an assessment-based event representation. Tables

3.8 and 3.9 report the recognition rates for TP1D-based event representations on

Max and Min raw channels. The average accuracy of the proposed TP1D+ELM is

8.33% better than the average accuracy of TP1D+SVM using the Max value and

20% better than the average accuracy of TP1D+SVM using the Min value. The

proposed TP1D has distinct effects on recognizing events, such as normal and pain

from facial intensity, and it obtains the best results along with the combination of

ELM and Max value channels.

Table 3.4: Recognition rates when the raw Max. value is directly applied into classi-
fiers

Events ELM SVM
normal 65 55

Pain 70 65
Post-pain 75 60

Table 3.5: Recognition rates when the raw Min. value is directly applied into classi-
fiers

Events ELM SVM
normal event 60 50

pain 65 65
post-pain 70 75
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Results of Experiment 2

For further evaluation, we conducted the experiments when the facial features

(i.e., the raw channels) are selected from the local face region with a size of 20×20

pixels . We reported the recognition results when applying the proposed NRTLBP

and TP1D descriptors along both maximum and minimum raw thermal channels.

ELM and SVM are used to classify thermal features into three categories: normal,

pain, and post-pain. The first experiment was conducted by directly providing the

raw features of the maximum and minimum values into the classifiers separately.

In this case, the results reported in Tables 3.10 and 3.11 compare the classifica-

tion performances of ELM and SVM for each of the following expressions: normal,

pain, and post-pain events. We also ran the experiment by using NRTLBP descrip-

tor along with both raw channels. Tables 3.12 and 3.13 shows the results of ELM

and SVM for the NRTLBP feature descriptor along the Max and Min channels. To

compare feature descriptors, TP1D is used to measure the performance results on

both raw channels. The performance results of TP1D are reported in Tables 3.14

and 3.15.

As indicated in Tables 3.10 and 3.11, ELM and SVM tend to be in line with each

other on some levels of events. In the case of using Max value, ELM has the best

recognition results of 75% over SVM in pain events, while SVM obtains better re-

Table 3.6: Recognition rates using the proposed NRTLBP descriptor on the Max. raw
channel

Events ELM SVM
normal event 85 80

pain 100 85
post-pain 80 90

Table 3.7: Recognition rates using the proposed NRTLBP descriptor on the Min. value

Events ELM SVM
normal event 75 60

pain 75 65
post-pain 80 80

Table 3.8: Recognition rates using the proposed TP1D descriptor on the Max. value

Events ELM SVM
normal event 90 75

Pain 85 90
Post-pain 100 85
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Table 3.9: Recognition rates using the proposed TP1D descriptor on the Min value

Events ELM SVM
normal event 75 60

Pain 80 55
Post-pain 90 70

Table 3.10: Recognition rates when the raw Max. value is directly applied into
classifiers

Events ELM SVM
normal event 60 55

pain 75 65
post-pain 70 75

Table 3.11: Recognition rates when the raw Min. value is directly applied into clas-
sifiers

Events ELM SVM
normal event 70 60

pain 55 65
post-pain 75 80

Table 3.12: Recognition rates using the proposed NRTLBP descriptor on the Max.
raw channel

Events ELM SVM
normal event 90 80

pain 95 90
post-pain 90 75

sults than ELM in the post-pain event. In the case of the Min value, SVM obtains

better results than ELM in the post-pain event. Tables 3.12 and 3.13 illustrate that

NRTLBP+ELM+Max have distinct effects on recognizing all events of facial inten-

sities. For example, an ELM has a stable recognition rate of 95.00% in pain versus

90.00% in normal event. In general, ELM with NRTLBP+Max has the best overall

classification performance. Tables 3.14 and 3.15 reports the recognition rates for

TP1D representations on Max and Min raw channels. The average accuracy of

TP1D+ELM is better than that of TP1D+SVM for normal and pain events using

Max value of the raw channel. Table 3.15 shows the performance of TP1D+ELM

over TP1D+SVM for the normal and post-pain events using the Min value of the

raw channel. The proposed TP1D has distinct effects on recognizing events from

facial intensity. Moreover, the classification accuracy of TP1D using ELM+Max is

significantly better than that which uses SVM+Max.
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Table 3.13: Recognition rates using the proposed NRTLBP descriptor on the Min. raw
channel

Events ELM SVM
normal event 75 80

pain 65 65
post-pain 70 65

Table 3.14: Recognition rates using the proposed TP1D descriptor on the Max. raw
channel

Events ELM SVM
normal event 100 85

pain 90 75
post-pain 85 80

Table 3.15: Recognition rates using the proposed TP1D descriptor on the Min. raw
channel

Events ELM SVM
normal event 80 75

pain 75 80
post-pain 85 70

In summery, the results presented here indicate that the thermal signature repre-

sentation in NIC may be included into the future neonatal monitoring modalities

for medical assessment and vital sign diagnostic. At currently, the results acquired

during measurement are not fully categorized and need more reliable measure-

ment protocols. Additionally, the neonatal thermal measurement are correlated

with other physical operators, such as opening and closing incubator, respiration

mask of infant, etc. However, behavior discrimination in neonatal monitoring

remains a challenge due to a complex interactions e.g. face masks or prongs, me-

chanical ventilation, head rotation, motion artifacts, etc.

Furthermore, whereas thermal imaging has been mainly applied to object detec-

tion in night monitoring, in this work thermography was shown to allow non-

contact event monitoring in CMinICU. Physically, the work is based on changes

the temperature intensity of facial region, induced by pain response in dedicated

ROIs. Until now the method achieves better, and the presented results are pre-

liminary and need further studies in a larger number of neonates and under a

variety of care setups. The analysis method needs further improvement, such as

automatic local ROI definition. Furthermore, the thermal monitoring may be also

considered as a first step to evaluate non-invasive behavior of premature infants.
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3.3 Conclusion

In this chapter, two thermal feature descriptors were proposed to represent tem-

poral evolution of raw thermal signals. These descriptors efficiently represent the

local skin underlying temperature profiles centered on the tip of the front and

face areas. We used a local patch defined over the ROIface to extract raw thermal

channels. We adopted two descriptors to encode the temporal information over

the time sequence of raw thermal signals to provide distinctive information about

the signal attributes. Moreover, the descriptors mapped the raw thermal features

into local temporal binary codes and topological persistence space, that is, they

allowed us to use efficient temporal feature descriptors to extract the most dis-

criminative pattern sequence. We used ELM and SVM as the classifiers for event

recognition. We evaluated the discrimination power of the descriptors on the

task of premature infant-based real event recognition from premature infant data

captured by thermal video. We demonstrated via experiments that the proposed

representation achieved the best results for event discrimination.

We used non-redundant local binary features and topological computation to

model the temporal variation of a manually sampled signal over a local area.

However, each event is usually characterized by a set of factors. Hence, we are

planning to explore new schemes to efficiently identify the set of attributes that

differentiate the local attributes of the signal. This study is one of the first at-

tempts to apply the concepts of local neighbor interaction and topological com-

putation to actual temporal evolution problems.

The results of this study are promising and suggest that the proposed feature rep-

resentation algorithms could prove useful in condition monitoring assessment.

Furthermore, this method may be an effective quantitative technique to demon-

strate the pain response pattern in premature infant infants. This possibly can

give information about the depth and the frequency of each event to get an early

sign of changes in the infant behavior.
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CHAPTER 4
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In this chapter, we propose a method for posture-based human action recognition.

In the proposed work, 3D locations of joints from a Skeleton information are con-

sidered as initial inputs to our method. Skeletal joint positions are first projected

into hip area of the body skeleton, and simple relation between coordinates vec-

tor is used to describe the 3D body coordinates. We perform the representation of

human postures by selecting 7 primitive joint positions, which generates a com-

pact feature called Joint angles. To make the skeletal joint representation robust

against minor posture variation, angles between joint are cast into orthogonal

planes of xy and zy, respectively. The vector of joint angle features is quantized

through unsupervised clustering into k pose vocabularies. Then encoding tem-

poral joints-angle features into discrete symbols is performed to generate Hidden

Markov Model HMM for each action. We recognize individual human action using

generated HMM. Experimental evaluation shows that this approach outperforms

state-of-the-art action recognition algorithms on depth videos.
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4.1 Proposed approach

4.1.1 Body skeleton representation

In this section we describe the human poses representation and joints position es-

timation from skeleton model. This kind of representation consists of 3D joints co-

ordinates of a basic body structure, which consisting of 20 skeletal joints as shown.

Recent release of RGBD system offers better solution for the estimation of the 3D

joint positions. An example in the Figure 4.1 demonstrates the result of depth

map and the 3D skeletal joints according to algorithm of [Bloom et al., 2012]

which proposed to extract 3D body joint locations from a depth map. The al-

gorithm of [Shotton et al., 2011] is used to estimate pose locations of skeletal

joints. Starting with a set of 20 joints coordinates in a 3D space, we compute

a set of features to form the representation of postures. Among the 20 joints, 7

primitive joints coordinates are selected to describe geometrical relations between

joints. The category of primitive joints offers redundancy reduction to the result-

ing representation. Most importantly, primitive joints achieve view invariance to

the resulting pose representation, by aligning the Cartesian coordinates with the

reference direction of the person. Moreover, we propose an efficient and view-

invariant representation of postures using 7 skeletal joints, including L/R hand,
L/R feet, L/R hip, and hip center.
The hip center is considered as the center of coordinate system, and the horizon-

tal direction is defined according to left hip and right hip junction. The remaining

4 skeletal locations are used for poses joint angles descriptor.

Action coordinates for skeletal joints

The output from 3D sensor system contains the most useful raw information about

the motion sequences, such as the depth image(D), body part relations of the

joints, and relative angles.

In order to make the 3D joints locations invariant to sensor parameters. We thus

necessarily need to register the hole skeleton body into a common coordinate

system, along the action sequence.

Therefore, to aligned the body skeleton into the reference coordinate system. we

take the hip center hc as the origin of the reference coordinate system, and use

its coordinates as the common basis, and define the horizontal reference vector ρ
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to be the vector from the left hip center to the right hip center projected on the

horizontal plane as depicted in Figure 4.2. In this work, the subject coordinates

comprises the following three orthogonal vectors {ρ, γ, β}that are identified as

ρ = j1−j2
‖j1−j2‖ , γ = ρ×u

‖ρ×u

u = j3−j2
‖j3−j2‖ , β = ρ× γ

. (4.1)

Where ji hip center, R/L hip joints, respectively, ||.|| denotes the norm of a vector

and × denotes the cross product of two vectors. As an illustrative example the

aligning of subject’s’ coordinates procedure is depicted in Figure 4.1

4.1.2 Features description

In this context, we choose to represent skeleton body in terms of the angles be-

tween joints, which showed to be more accurate than using e.g. directly the joints

‘coordinates. In order to compute a compact features, the aforementioned angles

are extracted in the orthogonal planes. Moreover, all angles are computed using

the hip-center joint as reference, i.e. the origin of the coordinate system is placed

at the hip-center joint coordinate.

Figure 4.1: (Left)Depth map image. (right) Skeletal joints positions proposed by
Bloom et. al. [Bloom et al., 2012]
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Figure 4.2: 3-dimensional coordinates corresponding to a human body skeleton

For computing the proposed action representation, only a primitive set of the

supported joints which defined in above section is used. To this end, only the

angles between,hand left/foot left, hand left/hand right, hand right/foot right, and
foot right/foot left respectively are extracted as shown in Figure 4.3. The angles

between joints are sampled from orthogonal planes, XY and ZY planes with re-

spect to the origin. In each plane, four angles are quantified using the trigonomet-

ric function. The skeletal joint-based pose representation is computed by casting

the 8 angles into the corresponding feature vector. Moreover,The final features

vector includes eight joints angles of Ft = {θ1, θ2, · · · , θ8} at each pose instant t.

4.1.3 HMM for action recognition

To apply HMMs to problem of human action recognition, the video frames

V = I1, I2, . . . , IT are transformed into symbols sequences O. The transformation

is done through the learning and recognition phases. From each video frames,

a feature vector fi ∈ R, {(i = 1, 2, . . . .T ) T , number of the frames} is extracted,

and fi is assigned to a symbol vj chosen from the set of symbols V . In order to

specify the observation symbols, we perform clustering of feature vector into k

clusters using K-means algorithm. Then each pose instance is represented as a

single number of a code word. In this way, we collect for each action a sequence

of the visual words. The obtained symbol sequences are used to train HMMs to
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Figure 4.3: 3-dimensional coordinates corresponding to a human body skeleton

learn the proper model for each activity. For recognition of a test activity, the ob-

tained observation symbol sequence O = O1, O2, . . . .ON is used to determine the

appropriate human action HMM from all trained HMMs.

HMMs, which have been recently applied with particular success to speech

recognition, are a kind of stochastic state transit model [Rabiner, 1989]. HMM

is using observation sequence to determine the hidden states. We suppose

O = O1, O2, . . . .ON as the observation of the stochastic sequence. HMM with

NS = s1, s2, .., sN state is specified by the triplet β = A,B, π of parameters. More

specifically, assume we denote by St the state at time instance t. The state transi-

tion probability matrix, used to describe the state transition between probability

is given:

A = {aji = Pr(st+1 = qj|st = qi)}. (4.2)

Where, aji is the probability of transiting from state qi to stateqj.

The matrix of observation probabilities, Used to describe observed values bj(k) of

output symbol vn at state qj is

B = Pr(vn|st = qi). (4.3)
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And the initial state distribution vector π is

π = {πi = Pr(s1 = qi)}. (4.4)

In training phase, we create a single HMM model for each of the actions. Then

for an action sequence V = v1, v2, .., vT we calculate the model Pr(V |β) of the

observation sequence using the forward algorithm. To this end, the action can be

classified as the sequence which has the largest posterior probability as:

L = arg maxi Pr(O|βi). (4.5)

Where i indicates the likelihood of test sequence for the ith HMM.

4.2 Experimental results

We evaluate our proposed method on different public datasets: MSR Action3D,

and gaming3D-Action. For each dataset, we extensively compare the State-of-

the-art skeleton-based methods to our approach. Note that we only used the

information from the skeleton for action recognition in our algorithm. The set of

clusters and number of state were fixed to K=80, and N=6. Cross subject testing

was used in the recognition system, i.e. half of the subjects were used for training

HMMS and the rest of the subjects were used for testing.

The proposed algorithm is tested on the MSR Action dataset using cross subject.

As originally proposed [Wanqing et al., 2010]the dataset was further divided into

subsets AS1;AS2 and AS3, each consisting of 8 actions see Table 1.1. We per-

formed recognition on each subset separately and all the results were averaged

over these subsets. Each test is repeated 10 times, and the average performance

is reported. We compare the performance with state-of-the-arts methods.

Table 4.1 reports the recognition rates of our method on MSR-Action3D dataset.

The recognition rates in the last row are the average of the recognition rates for

the three subsets AS1, AS2 and AS3. Table 4.2 reports the competitive result of

the proposed approach along with the corresponding accuracies of methods that

focus on skeleton joints action representation or depth information. It is worth

to note that our method outperforms the majority of these methods. Specifi-

cally, it outperforms the state-of-the-arts [Ofli et al., 2012, Lv and Nevatia, 2006b,
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Wanqing et al., 2010] by 29.4% , 13.36 %, and 1.76 %, respectively.

Table 4.1: Recognition rate of proposed method on the MSR Action dataset

Action Subset Accuracy
AS1CrSub 86.30
AS2CrSub 65.40
AS3CrSub 77.70

Overall 76.46

Table 4.2: Compare recognition rate (%) of proposed method with the state-of-the-
arts results, on the MSR Action 3D dataset.

Methods Overall
Joint angles + SIMJ (Ofli et al. [Ofli et al., 2012]) 47.06

Hidden Markov Model [Lv and Nevatia, 2006b] 63
Bag of 3D points (Li et al. [Wanqing et al., 2010]) 74.70
Histogram of 3D Joints (Xia et al. [Xia et al., 2012] 78.97

Our method 76.46

Table 4.3: Recognition accuracy on G3D dataset using skeleton joint

Action category Bloom et al. [Bloom et al., 2012] Our method
Fighting 70.46 % 79.84 %

Golf 83.37 % 100 %
Tennis 56.44 % 78.66 %

First Person Shooter FPS 53.57 % 54.10 %
Drive car 84.24 % 81.34 %

Miscellaneous Misc 78.21 % 89.40 %
Overall 71.04 % 80.55 %

We also tested the proposed method on the public G3D Action database that

was released for real time gaming-based dataset. As originally proposed in

[Bloom et al., 2012]. the actions are divided into 7 actions categories. We used

the same parameter settings as previously. Each test is repeated 10 times, and

the average performance is shown in Table 4.2. It can be noted that the pro-

posed method achieves considerably higher recognition rates than Bloom et.al.

on some actions category. In particular, the proposed method actually achieves

much higher recognition accuracy on Fighting, Golf, Tennis, and Misc categories.

While have recognition rate is slightly lower on Drive Car action group. However,

from Table 4.3, we can see that the proposed work perform better on 4 of the 6

action group.
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In summery, The joint angles based human skeleton representation works better

than the approaches based on direct joint position. It seems natural that the or-

thogonal partition information is very important for action recognition, and often

more important for view invariant than the relative distance or joint velocity in-

formation. Moreover, angles between joints in orthogonal planes encoding works

better than the joint position or distance between joint features approach. The

main cause why the angle between joint encoding works better than, for exam-

ple joint distance features approach, may be the loss of temporal information by

the joint distance features approach when doing the complex action and poor

assignment of local features to visual words.

4.3 Conclusion

This chapter presents a novel 3D skeleton representation framework for 3D pose

based action recognition. According to the proposed scheme, skeletal raw data

are projected into body coordinate system and five joints of human skeletal are

chosen.. The 3D pose representation of human action is represented by computing

the angels between joints in orthogonal planes, which constitutes view invariant

description of 3D human poses. Angels Feature vectors are then concatenated in

order to characterizes the prototype of the action. A set of code words are built by

clustering the large collection of feature vector. Discrete HMMs are learned and

used to classify sequential poses into action types.

We demonstrated the power of our methodology by obtaining state of the art re-

sults on recent, challenging benchmarks for action and gaming recognition. The

evaluation procedure summarizes that the proposed method achieves reasonable

performance on dataset includes both view invariant and temporal nature chal-

lenging. Since despite its simplicity, the proposed method provides compact 3D

pose description. Additionally provides a flexibility of incorporates more skeleton

joints in order to increase the reliability of accuracy in several applications.
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This chapter attempts to address the skeletal-joints representation problem in an

explicit model. In this model, a novel feature descriptor is used based on the

Spherical Harmonic Transform (SHT) of temporally local joints and the covari-

ance coefficients. The main objective of our approach is based on the calculation

of the SHT of spherical angles of local joints to explicitly model the displacement

of each individual joint. Unlike the traditional works that consider the spatial-

relation between individuals joints. While the present study is related to recent
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discrete spherical harmonics transform

approaches in skeleton descriptor, it capitalizes on a new feature space, which

was not considered in these earlier studies.

Let a spherical coordinates of skeleton joint Ji denoted by (θ, φ), the model of

temporal evolution ofJi can be represented using spherical harmonic of θ and φ

orientation respectively. Then, to handle frame length variations, for each action

category, we introduce the covariance technique to compute the covariance co-

efficients of each SHs matrix. Collecting the computed covariance coefficients of

all selected local joints forms the skeleton features representation for an action

sequence.

Finally, we present an extensive evaluation of the proposed skeleton-based de-

scriptor with the covariance encoding and the Extreme Learning Machine ELM on

four various 3D action recognition datasets. We show that the proposed descrip-

tor always achieves better results than the existing skeleton-based state-of-the art

algorithms.

5.1 Introduction

In chapter 4, we present simple skeleton body joint representation for action

recognition in RGBD video, which model the skeletal sequence as an angles be-

tween four primitive joints. the proposed representation can encode view in-

variant by extracting an angels feature vector via orthogonal plane partitioning.

However, despite the proposed method work better, the proposed method is not

good enough to encodes the temporal nature, and joint displacement in good way.

We observe that typically the joint movement based representation can provides

motion information about complex action which exhibit temporal variation. As

skeleton-based human action recognition techniques have shown to achieve good

results, we believe that more discriminative representation for modeling human

body skeleton could be proposed. Therefor, in this chapter we primary focus on

explicitly modeling the body skeleton joint by projecting the spherical orientation

of the joint into 3D Fourier harmonics basis.

Most the existing skeleton-based approaches are focused on features based on the

distance information between the joints and features based on the 3D coordinates

of the joints. These methods directly fed theses features into recognition system.

However, the temporal dependency and relation between individual features are

not considered by these techniques. Therefore the aforementioned methods might
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not enough provides discrimination ability to recognize complex actions. Differ-

ent from the existing techniques, we introduce a novel human body skeleton de-

scription for action recognition. Moreover, we project the Spherical angular vector

of local joint into Spherical Harmonics SH (i.e. 2-Sphere) to explicit modeling the

human body skeleton. In order to encode the structural information between

joints, we compute a covariance representation on SHs called CSHs. We present

an extensive evaluation of the proposed approach on four various state-of-the-

art datasets. We show that the CSHs outperform state-of-the-arts skeleton-based

action recognition.

5.2 Proposed approach

5.2.1 Body Coordinates Projection

Human poses are represented by a skeletal structure composed of 20 joints. Such

a representation is generated with the RGBD sensor as an example. Each joint is

represented by its 3D position in the real world. Fig. 5.1 shows a sample skeletal

structure corresponds to the 20 joints. Essential joints, including { hands, feet,

elbows, knees, and root}, are found in all skeletons and are regarded as the key

joints in translating the skeletal coordinates.

Several techniques for joint coordinate transformation incorporate various rela-

tional features with skeletal data or rely on the modified Cartesian and spherical

coordinates. In [Müller et al., 2005], the authors adopted projections of velocity

vectors on the plane defined by the shoulder and hip points. The torso princi-

pal component analysis (PCA) frame denotes another transformation and was re-

cently proposed in [Raptis et al., 2011]. This method is based on the assumption

that torso joints (shoulders and hips) rarely move independently; thus, the torso

can presumably be a rigid body. The authors proved that the orthonormal basis of

the corresponding torso joints can be determined by conducting PCA projection

on the coordinates of the torso area. Directly modified joint coordinate meth-

ods are explored in many works as well. [?] modified these methods by aligning

spherical coordinates with the specific direction of a person. Furthermore, these

researchers defined the center of the spherical coordinates as the hip center joint.

The horizontal reference vector is considered the direction from the left hip cen-

ter to the right hip center as projected on the horizontal plane, and the azimuth

angular vector is the vector that is perpendicular to the ground plane and passes
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Figure 5.1: Skeleton model: Left Skeleton model of 20 joints, Right selected joints for
pose representation

through the coordinate center.

However,to transform the joints into the body coordinate system, we select the

hip center as the reference joint, apply its coordinates as the common basis, and

transform all the other skeletons in the sequence to this joint.

As per this work, the origin of spherical coordinates is positioned at the hip cen-

ter by subtracting the coordinates of the root from all joints. To realize the view

invariance of skeletons, we utilize the rotation matrix to rotate these skeletons

such that the vector from the left hip to the right hip is parallel to the horizontal

coordinate system, as illustrated in Figure 4.2. We also normalize the angular

directions of the skeleton to be scale invariant. The new coordinate system can

approximate the trajectories of body joints and depends only on the directionality

of the joints around the hip area, that is, the hip center and the left/right hips.

5.2.2 Spherical angular estimation

For efficient pose representation that satisfactorily handles the view invariance

and independence from the relative position of the subject to the sensor, we rep-

resent a pose in terms of the angles of individual skeletal joints as expressed in the

proposed coordinate system. This approach is more discriminative than directly

applying the normalized joint coordinates. To compute for a compact description,

the aforementioned angles are estimated in the spherical coordinate system as



5.2. Proposed approach 69

follows:

θ(t) = arctan ( y
x
)

φ(t) = arccos ( z√
(x2+y2+z2)

)

(5.1)

where t is the frame index, and θi andφi are the estimated spherical angles. Fig-

ure. 5.1 explains the selected skeletal joints in this context. Only a subset of the

primitive joints is used because the trajectories of certain joints are close to one

another and are thus redundant in describing the configuration of body parts.

Otherwise, these trajectories contain noisy information. To this end, only the

joints that are presumably the most appropriate, that is, those that correspond to

the upper and lower body limbs, are considered. These joints are the right/left
elbows, right/left hands, right/left knees, right/left feet, and head.

Therefore, each pose is represented by a raw vector that consists of spherical an-

gles (θ, φ). The right panel in Fig. 5.2 indicates the spherical orientation of each

selected joint. The obtained spherical angles may improve the performance of

the proposed method because they detect characteristic motion patterns among

individual joints. Rotation invariance can be achieved explicitly by considering

spherical directions instead of an absolute joint position. Carefully estimating the

obtained spherical directions resolves significant ambiguities in the execution of

action pairs, such as punching and kicking, hand waving, and golf chipping.

Figure 5.2: Euler angles of selected joints expressed in the 3-D Spherical coordinates
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Figure 5.3: Overview of the calculation process of the proposed method. Firstly, we
extract temporal spherical orientations of the joint . Then we represent theses angels
using SHS. Then we use covariance property to build the action descriptor on SHs.
We apply ELM for recognition task

5.2.3 3D pose descriptor

A good descriptor should capture both static poses and joint kinematics at a given

moment in time to realize a robust representation that counters minor joint lo-

cation errors. However, most methods recognize motion by directly classifying

the features extracted based on joint position [Hussein et al., 2013], pairwise dis-

tance [Antônio et al., 2012], differences in joint position [Yang and Tian, 2012],

and body part segments [Evangelidis et al., 2014]. These approaches aim to

model the motion of either individual joints or the combinations of joints accord-

ing to the aforementioned features. A compact and efficient skeleton description

has been provided as an explicit model. Such methods straightforwardly model

joint information in appropriate spaces. In [Theodorakopoulos et al., 2014], a

skeleton was represented via sparse coding in a dissimilarity space. An alterna-
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tive path was proposed by [Vemulapalli et al., 2014] in which skeletal joints were

modeled as a point in the Lie group (special Euclidean space). 3D human ac-

tions were represented in [Devanne et al., 2013] by the spatio-temporal motion

trajectories of pose vectors. These trajectories were represented as curves in the

Riemannian manifold of an open-curve shape space to model the dynamics of

temporal variations in poses.

The overview of the calculation process of the proposed CSHs descriptor for hu-

man skeleton representation is illustrated in Figure 5.3. However, we are given

a vector of spherical orientation (or Euler as interchangeable) which belong to

individual joint, and our goal is to create its compact descriptor in SHs.

Skeleton joint representation using SHs

SHs are versions of trigonometric functions for the Fourier expansion on the unit

sphere s2. The properties of spherical modeling in terms of these harmonics are

naturally observed during analysis in the fields of theoretical physics, geoscience,

and astrophysics, among others. In this section, we review SHs.

SHs are an extension of Fourier techniques to three dimensions and are par-

ticularly well suited for modeling shapes from such data. These harmonics

are applied to related problems in computer vision and in 3D model retrieval

[Bustos et al., 2005, Saupe and Vranić, 2001], rotation invariance, descriptor-

based 3D shapes [Vranic, 2003], and face recognition under an unknown

lighting constraint [?] and [Romdhani et al., 2006]. The rich material in

[Lebedev N., 1972] provides a general introduction to SHT and presents classi-

cal tools of SHs.

Let (r, θ, φ) : r ∈ R+, θ ∈ [0, 2π], φ ∈ [0, π] be the spherical coordinates and f(θ, φ)

be the homogeneous harmonic functions on R3. In the current study, we aim to

determine the homogeneous solutions of the Laplace equation ∇2f = 0 in spheri-

cal coordinates. Likewise, we intend to explain how these solutions correspond to

the decomposition of eigenfunctions in space L2(S2), S2 = (x, y, z) ∈ R3. In this

case, SH generalizes the Fourier series to two spheres by projecting the square-

integrable function S2 onto the Hilbert space L2(S2).
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Firstly, for the following spherical coordinates:

x = r sin θ cosφ

y = r sin θ sinφ

z = r cos θ.

(5.2)

The Laplacian of a harmonic function using angular version is given by:

∆S2f =
1

sin θ

∂

∂θ

(
sin θ

∂f

∂θ

)
+

1

sin2 θ

∂2f

∂φ2
. (5.3)

The final solution of Laplacian in R3 (due to space limitation, the detailed solution

is no longer provided) is a set of Legendre function and eigenfunctions expressed

as follows:

f(θ, φ) = K(Pm
l (cosθ))(exp(jmφ)). (5.4)

Where K is a constant. The first term in Equation 5.4 is a set of Legendre poly-

nomials, and the second term is the eigenfunctions of the Laplacian on a sphere

with an eigenvalue of l(l + 1). The notation of the preceding equation represents

the SHs in complex form. In this context, we adopt the notion of real SHs with

the degree of l and order of m > 0. Thus, we set

ymn (θ, φ) =
√

(2)Km
n cos(mφ)Pm

n (cos θ). (5.5)

where Pm
l cos(θ) are the associated Legendre polynomials of degree l and order

m, defined by the differential equation as

Pm
l =

−1m

(2ll, !)
(1 + x2)

m
2

(dl+m)

(dxl+m)
(x2 − 1)l. (5.6)

And the trem Km
l is a normalization constant, equal to

Km
l =

√(
(l + 1

4m

)
(l − |m|)!
(l + |m|)!

. (5.7)

The author in [Lebedev N., 1972] specify that any function of the form f(θ, φ) can

be represented by a set of expansion coefficients on the unit sphere. Complete

harmonic basis functions are indexed by two integer constants (i.e., the degree l
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and the order m).

The sampling frequencies of the basis functions over the unit sphere are defined

by the values of the order −l ≤ m ≤ l. 2l + 1 bases are detected in general.

Visual representations of the real SHs in the azimuth and elevation directions

are displayed in Figure. 5.4 as an illustration. In this figure, the blue portions

represent positive harmonic functions, and the red portions depict the negative

ones. The distance of the surface from the origin indicates the value of Pm
l in the

angular direction (θ, φ).

Figure 5.4: Visual representations of the real spherical harmonics . (Right) l=3,
m=2.(Left) l=4, m=3

The above definitions typically explain the general solution of laplacian on the

angular version. Therefore, to project the spherical angular into the harmonics

basis, we decompose the f(θ, φ) using discrete SHs. For every local joint in body

skeleton, we extract a vector of angular directions(θk, φk), (k: joint index) along

time sequence. Thus, we map this vector into a basis functions as:

x(θ, φ) =

L max∑
l=0

l∑
m=−l

fml Y
m
l (θ, φ). (5.8)

where Lmax is a user-defined maximum frequency and fml denotes the expansion

coefficients, which are calculated with

fml =
4π

n

n−1∑
k=0

x(θk, φk) Y
m
l (θk, φk), (5.9)
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the real parts Y m
l (.) of spherical harmonic are defined as

Y m
l (θ, φ) =

{ √
2Km

l cos(mφ)Pm
l (x) , m > 0√

2Km
l sin(|m|φ)P

|m|
l (x) m < 0

(5.10)

The equation (5.8) has two fundamental solution, real harmonics spanned by

cos(mφ) and Legendre polynomials Pm
l of degree m. Our demonstrations have

shown how a basis of SHs can be computed entirely from 2n+ 1 systems of linear

equations. In the other hand, the set of solutions in equation (5.8) can be intu-

itively approximated by the distribution of the positive and negative coefficients

on the spherical surface. The discriminative coefficients are distributed according

to the frequency band and degree parameters. Figure 5.5 demonstrate practical

examples of higher order SHs basis functions decomposition.

Finally, for each individual joint we define its SHs as a 2D matrix. Moreover,the N

elements of spherical angels of individual joint form the N ∗N SHs matrix.

Figure 5.5: Plots of the higher order real-valued spherical harmonic basis functions.
Green indicates positive values and red indicates negative values.
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Covariance descriptor on SHs

Regardless of the skeleton structure being used, temporal sequence discrimination

into different action classes is a difficult task due to challenges like frame num-

bers variations in each action, and temporal joints dependency. To address these

problems for each action class, we propose a highly discriminative 3D pose de-

scriptor. Particularly, we introduce a novel skeleton-joints descriptor that is based

on finding the covariance coefficients on the spherical harmonics of local joints.

We sample these coefficients over the time of the action sequence.

The idea of covariance descriptor was first adopted by [Tuzel et al., 2006] as a

region descriptor of an image and texture-based classification. The idea of spa-

tiotemporal patch-based covariance descriptor is recently introduced as an action

recognition framework [Andres et al., 2013, Tuzel et al., 2008] . In our work, we

compute the spatiotemporal covariance coefficients between local joints elements

which extracted along the time sequence. The overview of the calculation process

of the covariance descriptor for a SHs vectors is presented in Figure 5.6.

Figure 5.6: process of Covariance Descriptor calculation

Suppose we have the entire skeleton structure is represented by Q joints, and

the action is performed over T time sequence (frame). Let H denote harmonics

data matrix of a set of spherical harmonics {h1, . . . ..hn}. Because sets of related

spherical harmonics of Q joints are considered for whole action, the 2-D SHs hi
of length m = v × u is expressed in column vector i.e. = vect(h). Thus, the

harmonic data H is anM × Q matrix, and defined as H = {h1, ...,hQ} where

typically,M > Q with fixed Q. Having obtained the harmonic data matrixH, the



76
Chapter 5. 3-D Skeleton joints-based action recognition using covariance descriptors on

discrete spherical harmonics transform

covariance elements over the sequence T is given :

C(H) =
1

T − 1

T∑
t=1

(H − H̄)(H − H̄). (5.11)

Where H̄ is the sample mean of H.

In our case, we sample the lower part elements of the covariance matrix C(.).

Thus, the length of the descriptor is Q(Q+ 1)/2. Where Q is the number of skele-

ton joints used to represent the action sequence. The obtained feature vector

represent the final features of the action sequence.

Once the descriptors are calculated in a video sequence, we use them to represent

this video sequence. Finally, we apply the ELM to classify video representations

into action categories.

5.3 Experiments

In this section, we present an evaluation, comparison, and analysis of

the proposed method. The experiments are performed on 4 state-of-

the-art action recognition datasets. These datasets are: MSR-Action3D

dataset [Wanqing et al., 2010], UTKinect-Action dataset [Xia et al., 2012],

Florence3D-Action dataset[Seidenari et al., 2013] and gaming G3D dataset

[Bloom et al., 2012]. In all experiments, we used a ELM classifier with the co-

variance descriptor.

For MSR-Action3D dataset, the protocol of cross subject test setting was used sim-

ilar to [Wanqing et al., 2010]. We further divided the dataset into subsets AS1,

AS2 and AS3 each consisting of 8 sub-actions. The recognition task was per-

formed on each subset separately and we averaged the results. For the remaining

data sets, we divide each dataset into half of the subjects for training and the rest

are used for the testing task. We selected nine joints from the body skeletal as

shown in Figure 5.1. These joints were used as an initial features input for de-

scriptor. The number of hidden neurons were selected by experiment to perform

high accuracies and our results are compared with state- of-the- arts methods that

rely only on the skeleton joints description.



5.3. Experiments 77

5.3.1 Recognition system

We employ Extreme Learning Machine ELM for the action classification. ELM is

a multi-class classifier recently introduced for pattern recognition. The proposed

action recognition system incorporates this classifier, which is a version of the feed

forward neural network [Huang et al., 2012]. Compared with other classifiers,

ELM provides significant performances, such as fast learning time and recognition

accuracy.

In [Harris and Stephens, 1988], ELM was adopted for human activity recognition

from video data. In recent years, this learning algorithm has been applied to solve

skeleton-based human action recognition problems [Chen and Koskela, 2013]

and many other computer vision problems. In this section, we present a brief

review of the theory underlying this type of machine learning. For more details

about the classical materials of ELM, see [Huang et al., 2006].

We summarize the mathematical sounds of ELM as follows. When the training

sample A is given by (xj, yj), j = [1, . . . , q], in which xj ∈ RN and yj ∈ RM , the

output function of ELM model with L hidden neurons can be expressed as follows:

fl(x) =
L∑
i=1

giωi(x) = Ω(x) G. (5.12)

where G = [g1, . . . ,gL] is the output weight vector relating the L hidden nodes to

the m > 1 output nodes, and Ω(x) = [ω1(x), . . . ..ωL(x)] is a nonlinear activation

function. The system Ωi(x) can be written in an explicit form presented as follows:

Ωi(x) = β(τi.x+ εi), τi ∈ Rd, εi ∈ R. (5.13)

where β(.) is an activation function with hidden layer parameters (τ, ε). In the

second stage of ELM learning, the error minimization between training data and

output weight Ω is solved by using the least square norm depicted below.

min‖ΩG−H‖2,G ∈ RN∗M . (5.14)

whereΩ defines the system of the layer of hidden neurons given as

Ω =


β(τ1.x1 + ε1) . . . β(τL.x1 + εL)

... . . . ...

β(τ1.xN + ε1) . . . β(τL.xN + εL)

 . (5.15)
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and H is the training data matrix denoted as

H =


hT
1
...

hT
N

 . (5.16)

The optimal solution for minimizing the training error in (5.14) practically as-

sumes that the number of hidden neurons L is less than that of the training set

(i.e., L < Q). Therefore, in using the Moore–Penrose generalized inverse of ma-

trix Ω, the optimal solution for (5.14) is given by[Huang et al., 2012]:

G∗ = Ω∗H. (5.17)

Where Ω∗ is the inverse of Ω.

5.3.2 MSR Action 3D dataset

Previous recognition results have already been reported in the literature using

the MSRAction3D dataset. Table 5.1 shows the recognition rate per action sub-

set along with the corresponding results of methods that rely on skeleton joints.

As we can see, our method gives a good results. More specifically, our method

outperforms most of the state-of-the-art methods on this dataset. Individually, the

proposed method achieves 90.94 % which is higher than the most state-of-the-arts

reported in [Xia et al., 2012, Yang and Tian, 2012, Ohn Bar and Trivedi, 2013,

Hussein et al., 2013], but it is slightly lower than the recent result reported in

[Vemulapalli et al., 2014]. In this case 750 hidden layers are observed in ELM

The proposed method significantly improves action recognition accuracy in com-

parison to the accuracies of the existing methods.

Table 5.1: Comparison of Recognition rates with the state-of-the-art results on MSR
action dataset

Histograms of 3D joints [Xia et al., 2012] 78.97
EigenJoints [Yang and Tian, 2012] 82.30
Joint angle similarities [Ohn Bar and Trivedi, 2013] 83.53
Covariance descriptors [Hussein et al., 2013] 90.53
Random forests [Zhu et al., 2013] 90.90
Joints as special Lie algebra [Vemulapalli et al., 2014] 92.46
Proposed approach 90.94
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5.3.3 UTKinect Action Dataset

Similar to [Zhu et al., 2013], we experimented with our approach on a UTKinect-

Action. Table 5.2 summarizes the recognition accuracies of our method compared

with current skeleton-based method using UTKinect dataset. In this case the pro-

posed approach gives the best results on these datasets. For example, the average

accuracy of our method outperforms the average accuracy of [Xia et al., 2012]

and [Zhu et al., 2013] by 0.73% and 3.75%, respectively. The number of the hid-

den layers was 700 for this dataset.

Table 5.2: Comparison of Recognition rates with the state-of-the-art results using
UTKinect dataset

Random forests [Zhu et al., 2013] 87.90
Histograms of 3D joints [Xia et al., 2012] 90.92
Proposed approach 91.65

5.3.4 Florence Action dataset

We further evaluate our method using Florence dataset, the recognition rates com-

pared with various methods were reported in Table 5.3, The proposed method

gives the best over the results of [Seidenari et al., 2013] by 5.5%. While, an al-

gorithm of Vemulapall et. al. [Vemulapalli et al., 2014] actually achieves much

higher recognition accuracy on this complex action set. The number of hidden

layers in this experiment t is 820.

Table 5.3: Comparison of Recognition rates with the state-of-the-art results, using
Florence dataset

Multi-Part Bag-of-Poses [Seidenari et al., 2013] 82.00
Joints as special Lie algebra [Vemulapalli et al., 2014] 90.88
Proposed approach 87.50

5.3.5 G3D dataset

We carried The last experiment on G3D-Action dataset. The average accuracy of

our representation reported in Table 5.4 is 21.26%. This result is better than the

average accuracy of [Bloom et al., 2012]. These results clearly demonstrate the

performance of our proposed method over a number of existing skeletal joints-

base approaches.
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Table 5.4: Comparison of Recognition rates with the state-of-the-art results, using
G3D dataset

Hybrid joints feature + adaboost [Bloom et al., 2012] 71.04
AL alwani et. al. [Alwani et al., 2014] 80.55
Proposed approach 92.30

5.4 Conclusion

From the experimental results observe we observe that, the Covariance descriptor

on SHs typically works better than most of the existing methods. This confirms

that relations between individual joint’s features and harmonics motion of these

features are informative and useful for action recognition. The combination of

the covariance with SHs improves action recognition accuracy. This confirms that

the proposed SHs directly models temporal features and the covariance descriptor

models relations between features. Moreover, the use of the SHs is very impor-

tant for modeling the angular orientations of the skeleton joint along temporal

variation.

The problem of skeleton body representation was explicitly modeled in this paper.

We have presented an efficient approach for skeleton-based human action recog-

nition. We adopted the spherical harmonics and covariance technique. We used

the spatiotemporal spherical harmonics that characterize the spherical angles of

local joints over the entire action sequence. We exploited the idea of covariance

components in order to capture the dynamic of the action and provide a relevant

descriptor with the a fixed length.

The experimental results tested on a various datasets prove the effectiveness of

the proposed method. Results demonstrate that our method can be successfully

used for capturing temporal changes in action and achieve a higher recognition

rate. In future studies, we will enhance our method for classifying and recogniz-

ing different other behaviors.
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In this study, we present a novel skeleton joint-based representation of 3D human

action in a spatiotemporal manner. We employ the spherical angles of body

joints computed from the 3D coordinates of skeleton joints. The proposed feature

representation is a combination of the modified spherical harmonics (MSHs)

and the spatiotemporal model of sequence level. To estimate the human pose,

the SHs of spherical angles provide a distinctive feature description. As such,

the problem of skeleton joint representation is addressed in a spatiotemporal

approach using MSHs. The proposed model simply incorporates two mechanisms

81
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to efficiently capture the temporal dynamic of joints, namely, the application of

MSHs in the computed spherical angles of each pose and the construction of

MSHs in a hierarchical scheme. MSHs are computed in multi-level, in which each

level encodes the time window of an action sequence.

In the proposed representation of 3D human action, the selected MSHs are

adopted to characterize the features in multi-levels and capture the har-

monic frequency of function in a two-sphere space. Given this condition,

the defined spherical angle vector of the selected joints may be projected

onto S2. However, the principle computation required in this space is ex-

tremely large because each selected joint is sampled by the feature vectors of

MJ = {M1, . . . ,MK},M ∈ RN×N ; where M , MSHs matrices of k levels, J joints

numbers, and N numbers of farms in each level. Considering that the desired

descriptor dimensionality aims to expedite the classification phase as well as

reduce the noise and redundant feature sizes, we apply dynamic time wrapping

(DTW) to determine the optimal alignment between the sublevels of hierarchical

MSHs.

An action classification is performed using the extreme learning machine (ELM)

classifier. The proposed method is evaluated based on recent skeleton-based 3D

action datasets.

6.1 Introduction

In the previous, we present the motivation behind using covariance on SHs for

action recognition. The method is mainly focused on the temporal property of

local joint only to extract the skeletal feature. We also use the classical covariance

to measure the relation between individual joint. However, the captured SHs

along temporal variation may not be enough to capture sufficient information in a

complex motion which require the fusion of the spatial distribution with temporal

dynamics. The information in spatiotemporal domain might carry complementary

information to each other.

Spatiotemporal representation of an action sequence can be seen as an extension

of the spatial domain to incorporate temporal dimension. It measure all kinds of

possible relationships between features. We introduce a new local spatiotemporal

descriptor for skeleton joint, and we propose a new approach for action recogni-

tion based on the introduced descriptor. The descriptor is based on a modified
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SHs basis function. which model the harmonics function in quadratics basis func-

tion.

The proposed descriptor can be used to represent skeleton joint orientations and

displacement features. In order to addresses the structural information of the

skeleton sequence, we use spatiotemporal domain, and we compute a Modified

MSHs on joint orientations. Similar to the previous work, spherical angles ( or

orientations is the same) are estimated for local and global body joints, and the

spatiotemporal system of these orientation is built. Then the MSHs is applied on

this system. Moreover, we encode the temporal variation and different frame se-

quence length by construct the MSHs in hierarchical fashion. The main difference

bertween the work in chapter 5 and the present one is that we use the proposed

MSHs with hierarchical fashion in spatiotemporal dimension.

We present an evaluation of our approach on four various state-of-the-art datasets.

We present that the MSHs achieves better than the previous SHS-based work and

the the state-of-the art algorithms.

6.2 Proposed approach

6.2.1 Spatiotemporal system of joint level features

In this section, we present the extraction of joint level features in spatiotemporal

domain. As mentioned in chapter 5 the skeleton joints are firstly represented in

terms of the spherical angles relatively measured with respect to the fixed coor-

dinates, which are more accurate than the joint coordinates or joint differences.

The spherical angles are quantified in the spherical coordinate as illustrated in

equation 5.8. All angles are computed corresponding to the origin reference (i.e.,

the origin of the spherical coordinate system is placed at the hip − center joint

coordinate). Only a primitive set of the supported joints is used for the 3D pose

representation as labeled in the right side of Figure 5.1.

To further analyze the 3D skeleton joints in terms of their spatiotemporal do-

main, we construct a spatiotemporal system which incorporates static and dy-

namic movements of the body skeleton joints.

Assume that the spherical angels are available in each frame. Let the entire skele-

ton body be represented by J joints (i.e., J = (1, 2, . . . , K), and the action be

performed over T frames. Thus, the spherical angle system of the entire action
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sequence can be constructed as a spatiotemporal system expressed as

Fs∈A(θ, φ) = Pose

y
J1

J2
...

Jk


(θ, φ)1,1 (θ, φ)1,2 . . . (θ, φ)1,T

θ, φ)2,1 (θ, φ)2,2 . . . (θ, φ)2,T
...

... . . . ...

(θ, φ)J,1 (θ, φ)J,2 . . . (θ, φ)J,T

 . (6.1)

where s is the specific action, T is the total number of frames in the action se-

quence, and J is the total number of joints in the static pose or frame. In the

above equation, each row represents the spherical angles of the local joint dis-

placement in the time sequence, while each column depicts the spherical angles

of each pose in the action sequence.

The representation based on the above system features provides a rotation invari-

ant representation of an action sequence. However, the relationships between

these joint level features and the spatial positions of these features may be infor-

mative and useful for action recognition.

6.2.2 Modified SHs

As mentioned, this study proposes a novel feature extraction framework, in which

the modified real part notation of SHs is used to represent the spatiotemporal

features of skeleton joints and improve human action recognition. However the

term real function of Standard SHs is given as:

ymn (θ, φ) =
√

(2)Qm
n cos(mφ)Zm

n (cos θ). (6.2)

Where Qm
n is the scaling factors expressed as:

Qm
n =

√
(2n+ 1)(n− |m|)!

4m(n+ |m|)!
. (6.3)

The real part function cos(mφ) of SHs, may be expanded using the trigonometric

identity into the following expression

cos(2φ) = 2 cos2 φ− 1. (6.4)
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Put 6.4 in 6.2, the modified SHs has the following form:

ymn (θ, φ) = Qm
n [2 cos2 φ− 1]Zm

n cos θ. (6.5)

Figure 6.1: Examples of harmonics basis function for a person performs a ten-
nis swing action. (Top panel/ left to right) temporal representation of :Elbow
Right/Left, Wrist Right.( Middel panel), wrist Left, Knee Right/left. (Bottom
panel), Foot R/L , and Head Joints respectively

Where Q is the scale factor, and Z is the associated Legendre polynomials. The

quadratic term in 6.5 captures the angular velocity of joint displacement. This

velocity is useful to differentiate the actions involved in a curved motion, such as

waving or shape drawing. Thus, for a given action, the angular quantities (e.g.,

relative angular speed and changes in directions of these joints) can be more sta-

ble across objects than their actual 3D positions.

However, the MSHs of the local 3D skeleton joints capture discriminant informa-

tion about different actions. In other words, the quadratic term in MSHs describes

the direction and angular speed of joint motions. Experiments have proven that

introducing the quadratic angular velocity and direction of joint dynamics signif-

icantly improves the use of the standard SHs.
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For the system depicted in 6.1, we compute its MSHs basis functions as explained

in equations 5.8-5.10, with exception that in equation 5.10, instead of using the

standard form, we use equation 6.5 for m = 2.

The estimated MSHs for the body pose at time t ( each column of 6.1) form

the static pose features descriptor. The collection of the estimated MSHs for

all frames of a specific action defines the static poses representation vectors of

Hs = [P1,P2, ....,PT]. Similarly, the MSHs of the local joint displacement are

calculated by projecting each row of equation 6.1 onto the basis functions of

MSHs. In this case, the individual MSHs of each local joint displacement is calcu-

lated over the entire row of equation 6.1. To form the MSHs vector of the local

joint motion for a given action segment, we collect the individual motion vectors

Hm = [M1, . . . ,MJ].

Figure 6.1 shows the real example of the MSHs calculation on the individual joint

for subject which performs tennis action. In this figure, each sphere demonstrates

the harmonics distribution corresponding to the individual joint listed in equation

6.1. We can see from Figure 6.1 the ability of MSHs to discriminate the temporal

variations between local joints.

6.2.3 Temporal construction of MSHs in hierarchical model

In 3D skeleton-based action recognition, a compact skeleton-based descriptor

should encode the static pose information and the temporal evolution or joint

motion at a given time segment. The static pose and joint displacement features

of a given skeleton body sequence contain discriminative data about the human

action over a time segment.

In the previous section, the MSHs capture the spatial dependency of the holistic

joints (i.e., pose in frame) and the motion of the local joint properties over the

time sequence. To efficiently encode the temporal variation of the local joints over

time, each SH of these joints is constructed in a hierarchical manner. The idea of

hierarchical construction is inspired by the spatial pyramid matching introduced

by [Lazebnik et al., 2006] to achieve matching in 2D images. Relying on deter-

mining the MSHs calculated in the previous section, we construct the MSHs of the

local joints in a multi-level approach. Each MSHs covers a specific time window

of the action sequence. The MSHs are computed over the entire video sequence

from the top level and over the smaller windows at the lower levels. Window

overlapping is used to increase the ability of the proposed representation to dif-
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ferentiate multiple actions by sliding from one window to the half of the next one,

as depicted in Figure 6.2.

Regardless of whether the multiple levels of SHs are used, differentiating the local

temporal sequences of various action categories is a difficult task because of nu-

merous issues, including the frame rate variations and the temporal independence

in each sub-level. To address these issues, DTW [Muller, ] is used to compute for

a distance between the multiple levels of SHs for each action category. Similarly,

DTW is used to identify the nominal distances between the SHs of consecutive

levels for each local joint. The distance vector for each local joint displacement is

then formed. The temporal model of the skeleton joints is encoded for each action

category as a concatenation of the distance vector Dt = [T1, . . . ,TJ] . Through

the computation of the pose and motion feature vectors of the whole skeleton

joints, an action sequence is represented by a combination of these vectors to

form a skeleton representation features vector as

S = Hs + Dt. (6.6)

The static pose and temporal dynamic of the harmonics contain information about

the spatiotemporal function over a time sequence of an action. Therefore, this

type of harmonic information can be considered as a compact representation of

the body skeleton joint and can be used to reliably classify an actions.

6.2.4 Alternative body skeleton features

Alternative skeleton representations are adopted as an another abstraction of

the skeleton features which are used for further performance evaluation of our

method. These skeleton representations are as follows:

Joint Location ( JL): simply concatenates all joint coordinates in one vector.

Pairwise joints differences ( PJDs): concatenation yf = {pi − pj|i, j =

(1, 2, . . . , K), i 6= j} of all frames.

Magnitude of the Position Velocity ( MPV): the velocity between the same joints

of enter frame defined as Yt1,t2 = ||pi,t1 − pi,t2||.
These skeleton representations are fed directly into the classifier to directly com-

pare the proposed method with the alternative representation schemes.
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Figure 6.2: A 3-level representation of Temporal construction of the SHs, SHslj is the
jth Spherical harmonics in the lth level of the hierarchy

6.3 Experimental results

To evaluate the effectiveness of the proposed method, we perform action recogni-

tion on the proposed feature representation and recently published datasets (i.e.,

MSR-Action 3D, G3D, Florence 3D Action, and UTKinect-Action datasets). These

datasets are used as benchmarks in the experiment. The action complexity of

these datasets varies from simple to complex sequences. In addition to depth

data, skeleton data are also provided by these datasets using a Kinect sensor as

required.

In all experiments, an ELM classifier is used with the proposed representation. For

each dataset, the state-of-the-art skeleton-based methods are extensively com-

pared with the proposed approach. The number of hidden neurons of ELM is

experimentally tuned for each dataset. To simplify the computation in each ex-

periment, we set the frequency of the basis functions over the sphere equal to

n = 2 and the degree m = 2. We consider the cross subject protocol for the test

setting in all datasets. In particular, half of the subjects are used for training, and

the other half for testing. In all experiments, we use nine joints from the body

skeletal as the initial input joints to our proposed method, as shown in Figure 6.3.
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The features from these joints are initially used for the skeleton feature represen-

tation.

Figure 6.3: Labeled skeleton joints used as initial input to the proposed method

Table 6.1: Recognition rates for various skeletal representations on MSR-Action3D
dataset

subset JL PDJ MPV Proposed
AS1 72.2 76.22 80.23 89.76
AS2 69.83 80.47 79.15 91.7
AS3 82.7 71.4 84.06 92.5
Average 74.91 72.36 81.14 90.98

Table 6.2: Recognition rates for various skeletal representations on UTKinect Action,
Florence3D Action, and G3D Action datasets

Dataset JL PDJ MPV Proposed
UTKinect 82.5 83.08 87.58 93.0
Florence3D 76.59 70.33 83.7 86.13
G3D 79 80.36 82.04 92.89
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Table 6.3: Comparison of Recognition rates with the state-of-the-art results on MSR-
Action3D dataset

Approaches Accuracy
Xia et. al 2012 [Xia et al., 2012] 78.97
yang & Tian 2012 [Yang and Tian, 2012] 82.30
Ohn & Trivedi 2013 [Ohn Bar and Trivedi, 2013] 83.53
Zhu et. al 2013[Zhu et al., 2013] 90.90
Hussien et. al.2013 [Hussein et al., 2013] 90.53
Evangelidis at. al 2012 [Evangelidis et al., 2014] 89.86
Vemulapali et. al 2014 [Vemulapalli et al., 2014] 92.46
SHs [AL alwani and Chahir 2015] [Alwani and Chahir, 2015] 90.94
proposed approach 90.98

6.3.1 Comparison with various skeleton features

The performance of various representations is evaluated on all datasets, and the

efficiency of the proposed method is compared with that of other skeleton repre-

sentations. Table 6.1 reports the accuracy of the proposed approach with the cor-

responding results of different representation methods based on the MSR-Action

dataset. Our findings presented in this table are achieved using three levels of

SHs, while the window overlap in the second and third levels is preserved. Com-

pared with other skeleton representations, the proposed method provides satis-

factory results. In particular, the proposed method improves the average accura-

cies of JL, PDJs, and MPV by 16.07%, 18.62%, and 9.84% , respectively. These

observations clearly indicate the superiority of the proposed representation over

existing skeleton representations.

Tables 6.2 summarizes the recognition accuracies of various skeleton representa-

tions on the UTKinect-Action, Florence 3D Action, and G3D datasets. The results

reveal that our method significantly outperforms the other skeleton representa-

tions on these datasets. In using UTKinect dataset, the accuracy of the proposed

representation is 10.5% better than that of JL, 9.92% better than that of PJDs, and

5.42% better than that of MPV. In the case of the Florence dataset, the accuracy

of the proposed representation is 9.54%, 15.8%, and 2.43% better than that of

JL, PJDs, and MPV, respectively. In the case of the G3D dataset, the accuracy of

the proposed representation is 13.83% better than that of JL, 12.47% better than

that of PJDs, and 10.79% better than that of MPV.
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6.3.2 Comparison with the state-of-the-art

The same datasets are used to compare the performance of the proposed method

with those of existing state-of-the-art methods. For each data set, the hidden neu-

rons are reported separately. In all experiments, the results correspond to using

three levels of hierarchical SHs, while preserving the overlap in the last two lev-

els.

Several recognition results on the MSR-Action 3D dataset are already available in

the literature. Table 6.3 presents the recognition rate of the proposed approach

along with those of the corresponding current methods. As indicated in this table,

the proposed approach obtains the best results compared with those of most ex-

isting methods. In particular, our method provides good results in line with those

of some existing methods but outperforms the others. In this case, 780 hidden

neurons are observed in ELM.

For further evaluation, the proposed approach is applied to the skeleton sequences

from UTKinect-Action, Florence, and G3D Action datasets. The performance of

the proposed approach in this experiment is also compared with those of the

corresponding methods. Table 6.4 compares our method with various state-of-the-

art skeleton-based human action recognition approaches on theUTKinect dataset.
The proposed approach gives comparable results. The average accuracy of the

proposed representation is 5.10% better than that given in [Zhu et al., 2013] and

2.08% better than that in [Xia et al., 2012]. The number of hidden neurons in

this experiment is 640.

Table 6.5 reports the average recognition accuracies in the case of the Florence

dataset. The results reveal that the accuracy of the proposed method is slightly

higher than that cited in [Seidenari et al., 2013]. In particular, the performance

of the proposed approach is superior over that of the state-of-the-art methods by

4.13%. Our results in this table correspond to 500 hidden neurons for ELM.

The performance of the proposed method is also assessed based on the G3D-

Action dataset. Table 6.6 demonstrates the results, which indicate that our

method evidently outperforms the existing skeletal joint-based state-of-the-art

methods by achieving better accuracy by 0.59%. In this experiment, 700 hidden

neurons exist in the ELM.
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Table 6.4: Comparison of recognition rates with the state-of-the-art results using
UTKinect dataset

Zhu et. al 2013 [Shimada and Taniguchi, 2008] 87.90
Xia et. al 2012 [Xia et al., 2012] 90.92
Devianne et. al 2013 [Devanne et al., 2013] 91.5
SHs [AL alwani and Chahir 2015] [Alwani and Chahir, 2015] 91.65
Proposed approach 93.0

Table 6.5: Comparison of recognition rates with the state-of-the-art results, using
Florence dataset

Siednari et. al 2013 [Seidenari et al., 2013] 82.00
SHs [AL alwani and Chahir 2015] [Alwani and Chahir, 2015] 87.50
Proposed approach 86.13

Table 6.6: Comparison of recognition rates with the state-of-the-art results, using
G3D dataset

Bloom et. al 2012 [Bloom et al., 2012] 71.04
AL alwani et. al 2014 [Alwani et al., 2014] 80.55
SHs [al alwani and Chahir 2015] [Alwani and Chahir, 2015] 92.30
Proposed approach 92.89

6.3.3 Benefit of modified SHs

Table 6.7 demonstrates that the addition of dynamic features expressed by the

second-order term of the real SHs dramatically increases the recognition accu-

racy compared with the standard SHs [Alwani and Chahir, 2015]. The efficiency

of using MSHs becomes evident when we compare them with the standard SH

descriptors. In Table 6.4, the recognition accuracies of MSHs are used and com-

pared with those of the standard SHs. The explicit estimation of angular speed

and directions in terms of the second-order function presents a significant perfor-

mance. For example, in the MSR-Action 3D dataset, the use of the quadratic term

in MSHs improves the recognition accuracy by a substantial .04% margin over

the standard SHs. In the case of the UTKinect and G3D datasets, the MSHs add

a significant improvement of 1.35% and 0.59% to their recognition accuracies re-

spectively. Contrarily, in the Florence dataset, the recognition rate is decreased

from 87.5% for SHs to 86.13% for MSHs.

Our findings affirm that the angular speed component of the quadratic function is

extremely important for action representation with curved displacement. Such a

displacement cannot be fitted by the spatiotemporal features of the standard real

SHs.
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Table 6.7: Comparison of Recognition rates with the SHs-based state-of-the-art re-
sults

Datasets SHs MSHs
MSR Action 3D 90.94 91.98
UTKnect 91.65 93.00
Florence 87.50 86,13
G3D 92.30 92.89

6.4 Conclusion

In this chapter, we introduced a novel framework for action recognition based on

an explicit model of 3D skeleton joints in a spatiotemporal domain. SH transform

was used to explicitly model the angular speed and direction of joints. A novel

MSH was also proposed based on the quadratic function of the real part of SHs.

According to our framework, all body joints were registered into a body coordi-

nate system to extract the spherical angles of joints expressed in 3D body coor-

dinates. The spatiotemporal system of human action was then constructed and

encoded by a set of MSHs of static poses and local joint displacement over time.

The temporal evolution of the skeleton joints was characterized in a hierarchical

manner. An appropriate skeleton representation of an action was formulated as

a vector of combined poses and joint motion features. For the action recognition,

ELM was used. The performance of the proposed method was evaluated based

on recent 3D skeleton-based datasets. We compared the proposed method with

the existing state-of-the-art methods either by adopting pure skeleton data or by

directly relying on depth data. The experimental results revealed that depending

on the used datasets, the proposed method can obtain results similar to those of

the extant methods or outperform them. The findings also indicated that MSHs

are well suited for action representation with curved movement and angular di-

rection changes.

In summary, our newly proposed method is in line with the recently presented

methods for 3D skeleton-based pose representation. The angular direction esti-

mated from skeleton data and its derived SHs are relevant for action recognition

and can be successfully used to capture temporal changes in action and obtain a

high recognition rate.
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CHAPTER 7

CONCLUSION AND PERSPECTIVES
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7.1 Summary of our contributions

The central motivation of the thesis is human action and event recognition. We

have addressed this problem from the perspective of features representations for

both thermal and 3D RGBD imaging, and we have proposed temporal-based fea-

ture encoding methods for event recognition in thermal video. We have proposed

three skeleton-based features representations algorithms for human action recog-

nition in RGBD video.

• Temporal-based for analyzing thermal images over time : The first challenge

addressed was the real event recognition in Neonatal Intensive Care system NIC

from thermal video. We have introduced two feature descriptors based on local

temporal evolution of thermal signature for event recognition. The first one is

based on the non redundant local binary pattern. Based on the fact that facial

region and temperature changes features are the main cues of an even, we explic-

itly extract these features from thermal video sequences by NRTLBP. In order to

quantize NRLBP, we choose the maximum and minimum channels of local tem-

perature values as initial raw thermal input to the NRTLPB descriptor. Then, we

have extended the idea of NRTLBP from the time domain to the wavelet domain,

and proposed a wavelet NRTLBP.

An event in NIC-based thermal video is viewed as a temporal variation patterns

in temporal dimensions. To effectively capture the temporal information of event

95
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in NIC, we have further proposed topological persistence of 1D technique. To

this end, the proposed method able to extract useful information from a large set

of thermal noisy features. These approaches were more applicable to real event

recognition tasks. The proposed methods were also shown to be compact to en-

code different type of thermal measurement, and to offer considerably improved

performance on challenging thermal scene benchmarks.

We have presented a performance evaluation of the above techniques, and we

have demonstrated that the proposed methods obtain better accuracy on real

thermal-based NIC dataset.

• Skeleton-based Human action recognition from RGBD video : The next chal-

lenge was the investigation a novel problems of recognizing human actions from

a body skeleton joints using RGBD data. We first proposed skeleton joint-based

3D action recognition framework. We developed 3D body reference coordinates

system by projecting the real world coordinates into skeleton space. The set of

the primitive joints are selected and the angels between these joints are computed

in orthogonal planes, the angls are then concatenated into a feature vector. This

feature is used as an abstraction of the body skeleton joint.

Since joint positions or distances between them, are not always provide good

joint representation for complex actions, we Designed two explicit approaches

for skeleton-based human action recognition. The first approach describes the

temporal evolution of local joint using spherical harmonics basis functions SHs.

Interesting spherical orientations of local joint are estimated in temporal domain

and described using spherical harmonics basis. Furthermore, to effectively cap-

ture the dependency between joints, we have proposed covariance descriptor on

SHs for the final representation of skeleton-based actions.

We have presented a performance evaluation of the above approach, and we have

shown that the proposed methods obtain better or similar performance in com-

parison to the existing state-of-the-arts methods on various 3D action datasets.

Our last key contribution of skeleton-based human action recognition consists of

modified SHs approach to encode human actions in spatiotemporal domain. To

accomplish this, we have developed the spherical orientation of the selected joints

as a spatiotemporal system. Then we have introduced MSHs in a hierarchical

mode to cope the temporal variation, noise, and frame length variability. Our

experiments have shown that this approach outperforms the current state-of-the-

art methods. From the obtained results, we can conclude that spatiotemporal

relations and harmonics basis bring a significant improvement over the alter-
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native joint representation. In addition, we have shown that formulating the

skeleton-based recognition problem as an explicit model problem allows to take

into account any relationships between local features (e.g. spatiotemporal and/or

spatial relationships).

7.2 Limitations

The main limitations of the event recognition in thermal video approach is the

requirements of the automatic facial segmentation and tracking, robust 1D sig-

nal segmentation, and fusion multiple physiological behavior responses. These

limitations may be possible on challenging datasets such Pretherm dataset.

The main limitations of the proposed 3D skeleton joint features description are

lack of the precision, body part occlusion, and a low accuracy of joint position

tracking in more complex scenario.

7.3 Perspectives

In term of perspectives, we feel it important to investigate :

• Multimodal imaging in medicine : The human body is homeothermic, i.e.

self-generating and regulating the essential levels of temperature for sur-

vival. Thermal imaging offers the great advantage of real time two-

dimensional temperature measurement. The credibility and acceptance of

thermal imaging in medicine is subject to critical use of the technology and

proper understanding of thermal physiology. A representative data set of

large group needs to be collected and tested for evolving medical appli-

cations for thermal imaging, including inflammatory diseases, complex re-

gional pain syndrome.

• Evaluation of skeleton-based approaches . We would like to evaluate our ap-

proaches on other challenging datasets, such as (MHAD) [Ofli et al., 2013],

HDM05-MoCap Dataset [Müller et al., 2007], and MSRC-12 Kinect Gesture

Dataset [Fothergill et al., 2012].

• Towards automatic prediction of action segment . The possible direction
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including: developing an automatic segmentation method for actions, so

that when the actor is performing continuously, we will be able to detect

the beginnings and ends of the actions. In addition, instead of running the

recognizer after the whole action has been performed, we will extend the

system to predicting the actions during performance, which will provide

further valuable information in on line applications.

• Action modeling with multiples cues . In chapters 4, 5, and 6, we discussed

recognition performance of the proposed methods and concluded that each

method has specific characteristics that could benefit from an adapted de-

scription. This has been especially obvious for spherical harmonics-based

techniques. Consequently, it seems necessary to adapt multiples actions rep-

resentation. One aspect is the combination of skeletal with other cues, such

as silhouette, body structure, and motion.

• Relative Trajectories of body joints in dynamic coordinate systems . The

possible direction is to investigate the Relative Trajectories using various

dynamic coordinate systems (e.g. human body center), and using several

dynamic coordinate systems at the same time, what could additionally en-

hance the discriminative power of trajectories.
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olution gray-scale and rotation invariant texture classification with local binary

patterns. IEEE Trans. Pattern Anal. Mach. Intell., 24(7):971–987.



106 Bibliography

[Parameswaran and Chellappa, 2006] Parameswaran, V. and Chellappa, R.

(2006). View invariance for human action recognition. Int. J. Comput. Vision,

66(1):83–101.

[Pavlidis et al., 2000] Pavlidis, I., Levine, J., and Baukol, P. (2000). Thermal

imaging for anxiety detection. In Proc. IEEE Workshop on Computer Vision
Beyond the Visible Spectrum: Methods and Applications, page 104 –109. IEEE.

[Poppe, 2010] Poppe, R. (2010). A survey on vision-based human action recog-

nition. Image Vision Comput., 28(6):976–990.

[Rabiner, 1989] Rabiner, L. R. (1989). A tutorial on hidden markov models and

selected applications in speech recognition. In PROCEEDINGS OF THE IEEE,

pages 257–286.

[Raptis et al., 2011] Raptis, M., Kirovski, D., and Hoppe, H. (2011). Real-time

classification of dance gestures from skeleton animation. In Proceedings of the
2011 ACM SIGGRAPH/Eurographics Symposium on Computer Animation, SCA

’11, pages 147–156. ACM.

[Raptis et al., 2008] Raptis, M., Wnuk, K., , and Soatto, S. (2008). Flexible dic-

tionaries for action classification. In The 1st International Workshop on Machine
Learning for Vision-based Motion Analysis - MLVMA’08.

[Romdhani et al., 2006] Romdhani, S., Ho, J., Vetter, T., and Kriegman, D. J.

(2006). Face recognition using 3-d models: Pose and illumination. proce. Of
the IEEE, 294(11):1977–1999.

[Saupe and Vranić, 2001] Saupe, D. and Vranić, D. V. (2001). 3d model retrieval
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